Вселенная, жизнь, разум - И Шкловский
Шрифт:
Интервал:
Закладка:
Учитывая это обстоятельство, можно сделать вывод, что за всю историю развития Галактики в ней вспыхнуло примерно 1 млрд. сверхновых звезд. Этого количества как будто бы достаточно для объяснения наблюдаемого содержания тяжелых и сверхтяжелых элементов в межзвездном газе и образовавшихся из него в разное время звезд "второго поколения". В то же время звезды, образовавшиеся в эпоху формирования Галактики (это субкарлики и звезды, входящие в состав шаровых скоплений, массы которых меньше одной солнечной), сохранили, по крайней мере в своих наружных слоях, "первоначальный" химический состав межзвездной среды, из которой они образовались. И действительно, у таких звезд "первого поколения" относительное содержание тяжелых элементов в десятки раз меньше, чем у Солнца, которое является звездой "второго поколения". Таким образом, наблюдаемые характерные различия в химическом составе звезд главной последовательности и субкарликов, о которых шла речь в гл. 2, находят естественное объяснение в рамках общей картины непрерывного обогащения вещества Галактики тяжелыми элементами.
До сих пор речь шла преимущественно о нашей звездной системе Галактике. Общие сведения о нашей Галактике, а также о других галактиках уже излагались в первой главе. Здесь мы остановимся на морфологических различиях между галактиками. Подобно тому, как была в свое время разработана классификация звезд, основывающаяся на их спектрах и светимостях и нашедшая свое выражение в знаменитой диаграмме Герцшпрунга-Рессела (см. рис. 15-17) был классифицирован и мир галактик. Известно, что классификация - это первый шаг к познанию закономерностей природы. Вспомним, например, Линнеевскую классификацию животного и растительного мира. Последующее развитие науки приводит к более глубокому пониманию чисто эмпирической классификации. Например, только спустя ~ 40 лет был правильно понят эволюционный смысл диаграммы Герцшпрунга-Рессела.
Общепринятая классификация галактик была предложена великим американским астрономом Хабблом еще в 20-х годах нашего столетия. Он же немного позже открыл знаменитое "красное смещение" в спектрах галактик (см. гл. 1), вытекающее из развитой несколькими годами раньше космологической теории выдающегося советского математика А. А. Фридмана. Таким образом, не будет преувеличением сказать, что Хаббл открыл Метагалактику - вот уже действительно самое большое открытие в истории науки...
Согласно Хабблу галактики делятся на три основных типа: а) эллиптические, б) спиральные, в) неправильные. Фотографии типичных представителей всех классов галактик приведены на рис. 6 (не сканировались). Эллиптические галактики ("E-галактики") представляют собой сфероиды с разной степенью сплюснутости и с большой концентрацией яркости к центру. Как показали последующие спектроскопические исследования, E-галактики состоят из огромного количества старых звезд малой массы с избыточным содержанием водорода. Такой же природы звезды, образующие сферическую составляющую нашей Галактики (см. гл. 1).
Спиральные галактики ("S-галактики") наряду со сферической звездной составляющей характеризуются наличием нескольких спиральных рукавов неправильной, клочковатой структуры. Хотя суммарная масса этих рукавов в сотни раз меньше массы "сферической составляющей" соответствующей галактики, они резко выделяются из-за присутствия значительного количества молодых массивных звезд высокой светимости. Эти звезды непрерывно образуются из облаков межзвездной газопылевой среды, концентрирующейся к плоскости, в которой лежат спиральные рукава. Заметим, что у E-галактик содержание межзвездного газа в сотни и тысячи раз меньше, чем у S-галактик. Поэтому процесс звездообразования в E-галактиках практически давно уже прекратился.
Наконец, неправильные галактики характеризуются своей нерегулярной формой и сравнительно малой массой. Кстати, по своей массе (определяемой количеством находящихся в них звезд) галактики различаются в весьма широких пределах. Наша Галактика с ее массой в 1011 солнечных масс принадлежит к числу гигантов. Туманность Андромеды (M31), как уже говорилось в гл. 1, имеет приблизительно в три раза большую массу. Пожалуй, самой большой из известных масс обладает знаменитая галактика M87, находящаяся в центральной части скопления галактик в созвездии Девы. По-видимому, масса этой галактики в сотню раз превышает массу нашей Галактики. На другом полюсе находятся карликовые галактики, массы которой ~ 107 солнечной, что только в несколько десятков раз больше массы шаровых скоплений.
Наряду с массой важнейшей характеристикой галактики является мера ее осевого вращения - вращательный момент на единицу массы. Мера вращения у E-галактик гораздо меньше, чем у S-галактик. Очень медленное вращение E-галактик не может объяснить их наблюдаемую эллиптичность, т. е. сплюснутость, подобно, например, тому, как действием центробежной силы можно объяснить сплюснутость земного шара у полюсов. По-видимому, сплюснутость E-галактик объясняется самим характером звездных движений в таких галактиках. В противоположность этому влияние центробежной силы у сравнительно быстро вращающихся рукавов S-галактик весьма существенно. Следует подчеркнуть, что различия между E- и S-галактиками не являются эволюционным эффектом. Другими словами, галактики рождаются либо как S, либо как E, и в процессе эволюции тип галактики сохраняется. Структура галактики определяется начальными условиями ее образования (например, характером вращения того сгустка газа, из которого она образовалась).
В настоящее время имеются уже довольно хорошо разработанные модели превращения огромного облака газа, сжимающегося в результате действия закона всемирного тяготения сперва в протогалактику, а потом в галактику. Построение таких моделей оказалось возможным только благодаря введению в практику исследований быстродействующих электронно-вычислительных машин (ЭВМ). В самом начале следует представить себе огромный газовый шар, сжимающийся по закону свободного падения к центру. Первоначальная температура этого газа могла быть достаточно высокой, быстро уменьшалась, причем из-за гравитационной неустойчивости образовывались больших размеров сгущения, эволюционировавшие в облака. Благодаря беспорядочным движениям, эти облака сталкивались, что вело к их дальнейшему уплотнению. На этом довольно раннем этапе из облаков стали образовываться звезды "первого поколения". Наиболее массивные из них успевали проэволюционировать задолго до того, как прекратилось сжатие протогалактик. Взрываясь как сверхновые, они обогащали межзвездную среду металлами. По этой причине звезды следующих поколений имели уже другой химический состав. Это привело, например, к тому, что звезды вблизи центра эллиптических галактик более богаты тяжелыми элементами, чем находящиеся на периферии, что как раз и наблюдается.
(adsbygoogle = window.adsbygoogle || []).push({});