Загадочные явления природы - Галина Железняк
Шрифт:
Интервал:
Закладка:
Наблюдения полярных сияний проводились и в Южном полушарии Земли. Однако там их трудно наблюдать в связи с тем, что области южной максимальной изохазмы расположены над труднодоступными и малонаселенными районами Антарктиды и омывающими ее морями. Южные полярные сияния были зафиксированы экспедициями капитана Кука в 1773 году и Ф. Беллинсгаузена в 1820 году.
Увидеть полярное сияние достаточно просто. Следует только приехать в места, где они наиболее часто видны. Но можно ли услышать полярное сияние? Живущие вблизи зоны наблюдений утверждают, что полярные сияния издают звуки. Эти звуки напоминают слабый шелест или шипение. Но записать эти звуки на магнитофон пока не получается.
Как же рождается сияние небес? Дело в том, что от Солнца непрерывно исходит поток горячей плазмы, так называемый солнечный ветер. Этот сверхзвуковой поток движется со средней скоростью 500 км/с. Он выносит из солнечной атмосферы магнитные поля. Достигнув окрестностей Земли, поток намагниченной плазмы отклоняется земным магнитным полем от первоначального направления. Он как бы обтекает Землю. В результате образуется свободная от частиц солнечного ветра полость — магнитосфера.
Взаимодействие солнечного ветра с геомагнитным полем ведет к образованию естественного гигантского магнитогидродинамического динамо, которое создает поперек магнитосферы разность потенциалов в 100 кВ и токи интенсивностью в десятки миллионов ампер. Кроме того, часть магнитных силовых линий с дневной стороны магнитосферы сносится на ночную, образуя гигантский хвост магнитосферы протяженностью в миллионы километров. Основная часть проникающей из солнечного ветра плазмы движется в антисолнечном направлении вдоль магнитосферной мантии. В процессе этого движения заряженные частицы перемещаются в центральную область хвоста магнитосферы и образуют плазменный хвост. Из него вдоль магнитных силовых линий они могут переходить в ночной сектор. Такой поток высыпающихся в атмосферу частиц постоянно генерирует полярное сияние.
Поскольку мы мыслим масштабами Солнечной системы, можно задать вопрос о том, существует ли свечение атмосферы на других планетах или спутниках? Существование полярных сияний на других телах Солнечной системы зависит от интенсивности их магнитного поля, а также плотности и состава атмосферы. В магнитосфере Меркурия сияния следует ожидать на широтах от 50 до 70 градусов на дневной стороне и от 25 до 35 градусов — на ночной. Тонкая гелиевая атмосфера Меркурия должна приводить к появлению сияний вблизи поверхности планеты в эмиссионных линиях гелия. На Венере очень слабое магнитное поле и плотная атмосфера. Но и там диффузные сияния должны наблюдаться, причем над большей частью поверхности планеты. Тонкая атмосфера Марса и его слабое магнитное поле не очень способствуют возникновению сияний. Наиболее подходящие условия для появления сияний существуют в магнитосфере Юпитера. И магнитное поле у планеты сильное, и атмосфера плотная. Спутники некоторых планет также имеют атмосферы. Например, спутник Сатурна Титан. Космические путешествия в эти далекие миры обязательно подарят исследователям множество чудесных открытий.
Но даже сейчас, когда наблюдатели еще не могут высадиться на поверхность далеких планет, космонавты с орбиты наблюдают полярные сияния. Интересно то, что из космоса полярные сияния видны всегда, и одновременно над большими территориями. Такие наблюдения производят неизгладимое впечатление, потому что отсутствует ослабляющее и искажающее влияние плотных слоев атмосферы. Иногда космонавты даже пролетают сквозь полярное сияние.
На станции «Салют-6» 11 и 12 апреля 1981 года космонавт В. В. Коваленок сделал следующую запись в бортовом журнале: «Вошли в полярное сияние. Идем в полярном сиянии. Слева по курсу оно имеет красный цвет. В 15:25 наблюдается несколько столбов. Красный цвет достигает Скорпиона (хвоста)… Идем, как в облачности, как в тумане. Сейчас над нами массивные полосы… Красные лучи доходят до Ориона, выше они приобретают голубоватый оттенок, а слева от станции — красно-оранжевый цвет… На фоне Земли видна лучистая структура каждой дуги полярного сияния». В это же самое время была отмечена сильная магнитная буря. 12 апреля 1981 года на 364-ом витке была сделана новая запись: «Очень много голубого цвета. Видим голубые лучи. Bот взметнулся голубой столб, вот взметнулся красный. По высоте голубые столбы 15 градусов. Игра красок: слева от Канопуса красный столб, зеленовато-голубое свечение, справа от него в направлении на Южный Крест — голубой столб. Очень редкое явление в полярных сияниях».
Полярные сияния можно вызвать искусственно! В 1975 году начался советско-французский эксперимент «Араке». Были выбраны две магнитно-сопряженные точки на поверхности земного шара. Это точки, расположенные на одной и той же силовой линии. Точки были выбраны следующие: в Северном полушарии — поселок Согра в Архангельской области, другая — в Южном полушарии, остров Кергелен в Индийском океане.
С острова Кергелен на геофизической ракете подняли небольшой ускоритель частиц — электронную пушку, которая на определенной высоте выбросила поток электронов. Распространяясь вдоль магнитной силовой линии, электроны попали в Северное полушарие. Поскольку силовая линия располагалась на высоте 20 000 км, полярное сияние было действительно мощным. Искусственные полярные сияния позволяют ученым изучать магнитосферу Земли. Иногда в ионосферу выпускают ионы бария с целью изучения атмосферы планеты, а также для выявления погодных изменений. Примерно через 35 секунд, после попадания в облака ионы бария возбуждаются в солнечных лучах и создают яркое малиновое свечение.
Град
Всемирная метеорологическая организация (ВМО) в 1956 году дала определение града: «Град — это осадки в виде сферических частиц или кусочков льда (градины) диаметром от 5 до 50 мм, иногда больше, выпадающие изолированно или же в виде неправильных комплексов. Градины состоят только из прозрачного льда или ряда его слоев толщиной не менее 1 мм, чередующихся с полупрозрачными слоями. Выпадение града наблюдается обычно при сильных грозах».
Но как образуется град? Явление градообразования исследовал кандидат географических наук М. Софер. Поднимающийся от земной поверхности в жаркий летний день теплый воздух охлаждается с высотой, а содержащаяся в нем влага конденсируется, образуется облако. Переохлажденные капли в облаках встречаются даже при температуре — 40 °C (высота примерно 8—10 км). Но эти капли очень нестабильны. Поднятые с земной поверхности мельчайшие частицы песка, соли, продукты сгорания и даже бактерии при столкновении с переохлажденными каплями нарушают хрупкий баланс. Переохлажденные капли, вступившие в контакт с твердыми частицами, превращаются в ледяной зародыш градины.
Мелкие градины существуют в верхней половине почти каждого кучево-дождевого облака, но чаще всего такие градины при приближении к земной поверхности тают. Так, если скорость восходящих потоков в кучево-дождевом облаке достигает 40 км/ч, то они не в силах удержать зародившиеся градины, поэтому, проходя сквозь теплый слой воздуха на высоте от 2,4 до 3,6 км, они выпадают из облака в виде мелкого «мягкого» града либо и вовсе в виде дождя. В противном случае восходящие потоки воздуха поднимают мелкие градины до слоев воздуха с температурой от — 10 °C до — 40 °C (высота между 3 и 9 км), диаметр градин начинает расти, достигая порой нескольких сантиметров. Стоит отметить, что в исключительных случаях скорость восходящих и нисходящих потоков в облаке может достигать 300 км/ч! А чем выше скорость восходящих потоков в кучево-дождевом облаке, тем крупнее град.
Для образования градины размером с шар для гольфа потребуется более 10 миллиардов переохлажденных капель воды, а сама градина должна оставаться в облаке как минимум 5—10 минут, чтобы достичь столь крупного размера. Надо заметить, что на формирование одной капли дождя необходим примерно миллион таких мелких переохлажденных капель. Градины диаметром более 5 см встречаются в суперячейковых кучево-дождевых облаках, в которых наблюдаются очень мощные восходящие воздушные потоки. Именно суперячейковые грозы порождают смерчи-торнадо, сильные ливни и интенсивные шквалы. В последнее время суперячейковые кучево-дождевые облака в средних широтах европейского континента отмечались в ночь с 20 на 21 июня 1998 года, а также 30 июля 2004 года, когда из-за обильного ливня произошли значительные подтопления на многих территориях.
Когда градина достигает такой массы, что восходящий поток не в силах ее удержать, она устремляется к поверхности Земли, и мы наблюдаем выпадение крупного града. Так, скорость падения градины диаметром 4 см может достигать 100 км/ч, а более крупные градины устремляются к Земле со скоростью 160 км/ч. Нетрудно догадаться, какие разрушения могут причинять градобития. Но и не каждая крупная градина достигнет земли: падая в облаке, градины сталкиваются друг с другом, при этом разрушаясь и превращаясь в более мелкие градины, тающие в теплом воздухе. В среднем 40–70 % образовавшихся градин так и не достигают поверхности Земли.