Проклятые вопросы - Ирина Радунская
Шрифт:
Интервал:
Закладка:
Он играл в простую игру. Брал самодельный электромагнит, между его полюсами всовывал кусочки различных материалов — металлов, кристаллов, ампулы с жидкостями — и то включал, то выключал электрический ток в обмотке электромагнита. Гортер как бы просвечивал вещества магнитным полем. И наблюдал, что при этом происходит. Игра простая, но она привела Гортера к пониманию важных законов строения вещества.
Намагничивая различные кристаллы и жидкости при помощи сильного электромагнита и наблюдая, как исчезает эта намагниченность после выключения внешнего поля, он сумел получить ряд новых и ценных сведений о строении вещества, о влиянии теплового движения атомов на поведение твёрдых тел и жидкостей.
Казалось, само время шло навстречу Гортеру. Оно подбросило ему ещё одного помощника — радиоволны. Родилась электронная лампа. Из рук связистов она перешла в лаборатории физиков, и всё большему числу учёных становилось ясно, что, просвечивая вещества радиоволнами, можно проникнуть в тайны их строения более успешно, чем с помощью одного лишь магнитного поля.
Теоретики, опираясь на уравнения квантовой механики, предсказывали, что, пробираясь сквозь дебри, образованные внутренней структурой реальных тел, радиоволны разных частот ведут себя различно. Они по-разному поглощаются веществом — то в большей, то в меньшей степени. И это поглощение сильно зависит от частоты радиоволны и от величины и направления внешнего магнитного поля.
Где-то на какой-то частоте — специфической для данного вещества — должен возникнуть особый эффект: самое сильное поглощение, пик поглощения. Его называют «резонанс». Во многих веществах следовало ожидать появления нескольких резонансных пиков, характерных именно для них. Почему это так заинтересовало исследователей? Потому что обещало прояснить скрытые ранеё тайны поведения вещества.
Теория подсказывала, что многообещающими должны быть исследования кристаллов, особенно в том случае, когда во время облучения радиоволной они находятся в поле сильного магнита. Наиболее интересными казались именно те кристаллы, магнитные свойства которых изучал Гортер и его ученики.
Какие же явления происходят при этом в недрах кристаллов? Некоторые атомы, входящие в кристаллы, ведут себя как маленькие магнитики, стремящиеся, подобно стрелке компаса, повернуться в направлении внешнего магнитного поля. Но хаотическое тепловое движение окружающих атомов не даёт им послушно следовать велению магнитного поля. Они толкают «магниты» и поворачивают их в разные стороны. Подобные случайные толчки мешают иной раз и стрелке компаса правильно указывать на север.
Ещё сильнее на крошки-магнитики могут действовать регулярные толчки, особенно если они попадут в резонанс с их колебаниями. Кому неизвестна катастрофа, вызванная тем, что шаги отряда солдат попали в резонанс с колебаниями моста и разрушили его! Вспоминаются и факты, при которых вибрации двигателей вызывали разрушения морских судов и самолётов. Резонанс, столь приятный в музыке, может оказаться весьма опасным в одних случаях и очень полезным в других, если суметь разумно им воспользоваться.
Читатель, наверное, уже догадался, что такие толчки в кристаллах можно создавать при помощи радиоволн. Тогда-то и может произойти то внезапное бурное поглощение энергии радиоволн атомами вещества, которое названо резонансным поглощением.
Теоретики подсказывали: изменяя настройку генератора радиоволн, можно легко обнаружить эти резонансы.
Что могло быть проще — вращай ручку настройки лампового генератора и наблюдай!
Дело было за экспериментаторами.
Не только Гортер, многие пытались опытным путём обнаружить эти загадочные резонансы, но тщетно. Никто не понимал, в чём была причина неудач… Гортер подошёл почти вплотную к открытию, но… прошёл мимо.
Обратимся теперь к научным событиям, происходившим в первой половине тридцатых годов в Казани. Этот древний город с устоявшимися культурными традициями славится своим университетом.
В нём учился Ленин. В его стенах работали замечательные математики, в том числе один из создателей неевклидовой геометрии Лобачевский, крупнейший химик прошлого Бутлеров и наши современники, известные химики — отец и сын Арбузовы.
Победное окончание Великой Отечественной войны совпало с одним из величайших достижений современной физики, ещё раз прославившим Казанский университет.
Евгений Константинович Завойский со студенческих лет вынашивал идею об использовании электромагнитных волн для изучения строения и свойств веществ. Его, как и Лоренца, завораживали тайны, скрытые в оптических спектрах атомов.
Сочетание этих линий, расположение в спектрах, их появление и исчезновение стали предметом раздумий Завойского.
Ещё в предвоенные годы стало ясно, что исследование спектров не должно ограничиваться оптической областью. Многое могли бы поведать спектры в радиодиапазоне. Но лишь прогресс в радиотехнике дециметрового и сантиметрового диапазона, связанный с созданием радиолокации, открыл возможности для новых спектроскопических исследований. Рождалась радиоспектроскопия.
Зарубежные учёные использовали новые возможности для изучения газов. Теория предсказывала, а опыт раз за разом подтверждал, что именно в газах можно наблюдать возникновение резонансов при поглощении радиоволн. Расшифровка этих резонансов позволяла узнавать всё новые детали строения молекул. И эта область экспериментальной работы привлекала всё большее число исследователей.
Теоретики, пролагая путь экспериментаторам, ставили перед собой интересные задачи в радиоспектроскопии газов. Многие из учёных обращались к загадке неуловимых резонансов в магнитных кристаллах. Проблемы, возникавшие здесь, были нелёгкими. Но недаром физики шутят: был бы факт, а теория найдётся. Появились расчёты, показывающие, что резонансы, которые искал Гортер и его последователи, вообще не должны наблюдаться.
КОЛУМБОВО ЯЙЦОБольшинство физиков, занимающихся радиоспектроскопией, спокойно восприняли эти результаты. Учёные, работавшие в других областях, просто не обратили на них внимания. Завойский же, глубоко обдумавший сущность процессов взаимодействия радиоволн с веществом, не мог согласиться с подобными выводами.
Он восстал против авторитета теоретиков. Он понял, что неудачи попыток Гортера и других исследователей могут объясняться тем, что расчёты, на основе которых велись эксперименты, не опирались на правильные опытные данные. В эти расчёты помимо универсальных констант, таких, как постоянная Планка и некоторые другие, входили величины, ранеё полученные из опытов, основанных на применении постоянного магнитного поля.
Постоянное магнитное поле! А если?..
Говорят, что не меньше чем открытием Америки Колумб прославился решением знаменитой задачи о крутом яйце. (Тоже один из любопытных и плодотворных вопросов: как поставить вертикально яйцо, чтобы оно не упало?) Чтобы поставить его вертикально, Колумб просто надбил его.
Теперь нам кажется, что Завойский сделал очень небольшой шаг. Но этот шаг шёл в сторону от проторённой дороги. И он привёл молодого физика к успеху.
Почему все изменяли настройку генератора радиоволн, оставляя магнитное поле неизменным? — недоумевал Завойский. Такова традиция… Но есть ведь и другой путь. Пусть им ещё никто не шёл. Здесь есть свои трудности, но нет никаких разумных запретов. И Завойский решился. Вместо того чтобы вращать ручку своего генератора, перестраивая его частоту, как это делали исследователи до него, он оставил генератор в покое. Решил искать резонанс, меняя величину магнитного поля того магнита, между полюсами которого располагался кристалл. Для этого он плавно изменял величину электрического тока, протекающего по обмотке электромагнита, и непрерывно наблюдал, как радиоволны поглощаются веществом.
Так в 1944 году был впервые обнаружен замечательный эффект, долго ускользавший от самых опытных экспериментаторов, носящий несколько непонятное для непосвящённых наименование — электронный парамагнитный резонанс. Теперь мы с уверенностью относим открытие Завойского не только к самым замечательным, но и к самым плодотворным открытиям XX века.
Завойский обнаружил механизм, приводящий к поглощению радиоволн в кристаллах. Выяснилось, что этим механизмом управляли электроны, те самые электроны, что входят в состав некоторых ионов, образующих кристалл. Электроны оказались миниатюрными приёмниками радиоволн!
Перед экспериментаторами раскрылись необычайные возможности использований этого тонкого, гибкого, легко управляемого механизма для создания принципиально нового вида усилителя радиоволн. Ведь эти электроны в таком, ещё не созданном, усилителе связаны электрическими силами с атомными ядрами, а через них с самим кристаллом. Следовательно, настройка этих новых усилителей может изменяться. Она зависит как от строения кристалла, так и от входящих в него ионов. Изменяя структуру кристалла и вводя те или иные ионы в виде добавок, можно влиять на «грубую» настройку этого удивительного усилителя, а его точную настройку производить небольшим изменением величины постоянного магнитного поля.