Категории
Самые читаемые
PochitayKnigi » Компьютеры и Интернет » Интернет » Linux программирование в примерах - Роббинс Арнольд

Linux программирование в примерах - Роббинс Арнольд

Читать онлайн Linux программирование в примерах - Роббинс Арнольд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 253
Перейти на страницу:

Справочная страница не углубляется в описание проблемы со встроенной alloca() GCC. Если есть переполнение стека, возвращаемое значение является мусором. И у вас нет способа сообщить об этом! Это упущение делает невозможным использование GCC alloca() в устойчивом коде.

Все это должно убедить вас избегать alloca() в любом новом коде, который вы пишете. В любом случае, если приходится писать переносимый код с использованием malloc() и free(), нет причины в использовании также и alloca().

3.2.5. Исследование адресного пространства

Следующая программа, ch03-memaddr.c, подводит итог всему, что мы узнали об адресном пространстве. Она делает множество вещей, которые не следует делать на практике, таких, как вызовы alloca() или непосредственные вызовы brk() и sbrk().

1  /*

2   * ch03-memaddr.с --- Показать адреса секций кода, данных и стека,

3   * а также BSS и динамической памяти.

4   */

5

6  #include <stdio.h>

7  #include <malloc.h> /* для определения ptrdiff_t в GLIBC */

8  #include <unistd.h>

9  #include <alloca.h> /* лишь для демонстрации */

10

11 extern void afunc(void); /* функция, показывающая рост стека */

12

13 int bss_var; /* автоматически инициализируется в 0, должна быть в BSS */

14 int data_var = 42; /* инициализируется в не 0, должна быть

15                       в сегменте данных */

16 int

17 main(int argc, char **argv) /* аргументы не используются */

18 {

19  char *p, *b, *nb;

20

21  printf("Text Locations:n");

22  printf("tAddress of main: %pn", main);

23  printf("tAddress of afunc: %pn", afunc);

24

25  printf("Stack Locations.n");

26  afunc();

27

28  p = (char*)alloca(32);

29  if (p != NULL) {

30   printf("tStart of alloca()'ed array: %pn", p);

31   printf("tEnd of alloca()'ed array: %pn", p + 31);

32  }

33

34  printf("Data Locations:n");

35  printf("tAddress of data_var: %pn", &data_var);

36

37  printf("BSS Locations:n");

38  printf("tAddress of bss_var: %pn", &bss_var);

39

40  b = sbrk((ptrdiff_t)32); /* увеличить адресное пространство */

41  nb = sbrk((ptrdiff_t)0);

42  printf("Heap Locations:n");

43  printf("tInitial end of heap: %pn", b);

44  printf("tNew end of heap: %pn", nb);

45

46  b = sbrk((ptrdiff_t)-16); /* сократить его */

47  nb = sbrk((ptrdiff_t)0);

48  printf("tFinal end of heap: %pn", nb);

49 }

50

51 void

52 afunc(void)

53 {

54  static int level = 0; /* уровень рекурсии */

55  auto int stack_var; /* автоматическая переменная в стеке */

56

57  if (++level == 3) /* избежать бесконечной рекурсии */

58   return;

59

60  printf("tStack level %d: address of stack_var: %pn",

61   level, &stack_var);

62  afunc(); /* рекурсивный вызов */

63 }

Эта программа распечатывает местонахождение двух функций main() и afunc() (строки 22–23). Затем она показывает, как стек растет вниз, позволяя afunc() (строки 51–63) распечатать адреса последовательных экземпляров ее локальной переменной stack_var. (stack_var намеренно объявлена как auto, чтобы подчеркнуть, что она находится в стеке.) Затем она показывает расположение памяти, выделенной с помощью alloca() (строки 28–32). В заключение она печатает местоположение переменных данных и BSS (строки 34–38), а затем памяти, выделенной непосредственно через sbrk() (строки 40–48). Вот результаты запуска программы на системе Intel GNU/Linux:

$ <b>ch03-memaddr</b>

Text Locations:

 Address of main: 0x804838c

 Address of afunc: 0x80484a8

Stack Locations:

 Stack level 1: address of stack_var: 0xbffff864

 Stack level 2: address of stack_var: 0xbffff844

  /* Стек растет вниз */

1 ... 28 29 30 31 32 33 34 35 36 ... 253
Перейти на страницу:
Тут вы можете бесплатно читать книгу Linux программирование в примерах - Роббинс Арнольд.
Комментарии