Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Читать онлайн Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 116
Перейти на страницу:

Фейнман провозгласил, что каждый электрон, который проходит через преграду и попадает на фосфоресцирующий экран, проходит через обе щели. Это звучит дико, но не торопитесь возмущаться, вас ждут ещё более сумасшедшие заявления. Фейнман высказал утверждение, что на отрезке от источника до некоторой точки на фосфоресцирующем экране каждый отдельно взятый электрон на самом деле перемещается по всем возможным траекториям одновременно; некоторые из этих траекторий показаны на рис. 4.10.

Рис. 4.10. Согласно формулировке квантовой механики, предложенной Фейнманом, частица, перемещающаяся из одной точки в другую, движется одновременно по всем возможным путям. Здесь показано несколько из бесконечного числа возможных траекторий для одного электрона, движущегося от источника к фосфоресцирующему экрану. Обратите внимание, что этот один электрон на самом деле проходит через обе щели

Электрон вполне упорядоченным образом проходит через левую щель. Одновременно он столь же упорядоченно проходит через правую щель. Он направляется к левой щели, но вдруг меняет направление и устремляется к правой. Он петляет вперёд и назад и, наконец, проходит через левую щель. Он отправляется в долгое путешествие к туманности Андромеды, там он разворачивается, возвращается назад и проходит через левую щель на пути к экрану. Он движется и так и этак — согласно Фейнману, электрон одновременно «рыщет» по всем возможным путям, соединяющим пункт отправления и пункт назначения.

Фейнман показал, что каждому из этих путей можно поставить в соответствие некоторое число, и общее среднее этих чисел даст ту же вероятность, что и расчёт с использованием волновой функции. Итак, с точки зрения Фейнмана, с электроном не нужно связывать никакой вероятностной волны. Вместо этого мы должны представить себе нечто столь же, если не более, странное. Вероятность того, что электрон, — который во всех отношениях проявляет себя частицей, — появится в некоторой заданной точке экрана, определяется суммарным эффектом от всех возможных путей, ведущих в эту точку. Этот подход к квантовой механике известен как фейнмановское «суммирование по путям».[16]

Здесь начинает протестовать наше классическое образование: как может один электрон одновременно перемещаться по различным путям, да ещё и по бесконечному числу путей? Это возражение кажется неоспоримым, но квантовая механика — реальная физика нашего мира — требует, чтобы вы держали столь тривиальные возражения при себе. Результаты расчётов с использованием фейнмановского подхода согласуются с результатами, полученными с применением метода волновых функций, которые, в свою очередь, согласуются с экспериментальными данными. Вы должны позволить природе самой определять, что является разумным, а что — неразумным. Как написал в одной из своих работ Фейнман: «[Квантовая механика] даёт совершенно абсурдное с точки зрения здравого смысла описание Природы. И оно полностью соответствует эксперименту. Так что я надеюсь, что вы сможете принять Природу такой, как Она есть — абсурдной».{20}

Однако независимо от того, насколько абсурдной является природа на уровне микромира, при переходе к нашим обычным масштабам любая теория должна приводить к привычным прозаичным событиям. Как показал Фейнман, для движения больших тел, таких как бейсбольные мячи, аэропланы или планеты, каждое из которых является огромным по сравнению с субатомными частицами, его правило определения весов различных траекторий гарантирует, что все траектории, кроме одной, взаимно сократятся при суммировании их вкладов. В действительности, когда дело касается движения классического тела, значение имеет только одна траектория из бесконечного их количества. И это именно та траектория, которая следует из ньютоновских законов движения. Вот почему в нашем повседневном мире нам кажется, что тела (такие, как брошенный в воздух мяч) следуют вдоль единственной, уникальной и предсказуемой траектории из начальной точки в пункт назначения. Но для объектов микромира фейнмановское правило назначения весов траекториям показывает, что свой вклад в движение объекта могут вносить (и часто вносят) многочисленные возможные траектории. Например, в эксперименте с двумя щелями некоторые из траекторий проходят через разные щели, приводя к образованию интерференционной картины. В микромире мы не можем гарантировать, что электрон пройдёт только через одну щель или только через другую. Интерференционная картина и фейнмановская альтернативная формулировка квантовой механики недвусмысленно поддерживают друг друга.

Как разные мнения о книге или фильме могут оказаться полезными для понимания различных моментов этого произведения, так и различные подходы к квантовой механике помогают углубить понимание этой теории. Хотя предсказания метода волновых функций и фейнмановского суммирования по траекториям полностью согласуются друг с другом, в их основе лежат совершенно различные представления. Как мы увидим позднее, для разных приложений тот или иной подход может стать неоценимым средством объяснения.

Квантовые чудеса

К настоящему моменту у вас должно было появиться некоторое представление о волнующем новом образе мироздания согласно квантовой механике. Если вы ещё не впечатлились от поразительных высказываний Бора, квантовые чудеса, о которых пойдёт речь ниже, заставят вас, по крайней мере, испытать головокружение.

Квантовую механику трудно понять на интуитивном уровне, ещё труднее, чем теорию относительности — для этого нужно начать мыслить подобно миниатюрному человечку, родившемуся и выросшему в микромире. Существует, однако, одно положение этой теории, которое может служить путеводителем для интуиции, своего рода пробным камнем, который отличает квантовую логику от классической. Это соотношение неопределённостей, открытое немецким физиком Вернером Гейзенбергом в 1927 г.

Это соотношение выросло из проблемы, с которой мы уже сталкивались выше. Мы установили, что процедура определения щели, через которую проходит каждый из электронов (т. е. определение положения электронов), неизбежно вносит возмущения в их последующее движение. Однако вспомним, что убедиться в присутствии другого человека можно разными способами — можно дать ему увесистый шлепок по спине, а можно нежно коснуться его. Тогда что мешает нам определить положение электрона с помощью «более нежного» источника света, который бы оказывал меньшее влияние на его дальнейшее движение? С точки зрения физики XIX в. это вполне возможно. Используя всё более слабую лампу (и всё более чувствительный датчик светового излучения), мы можем оказывать исчезающе малое влияние на движение электрона. Но квантовая механика демонстрирует изъян в наших рассуждениях. Известно, что уменьшая интенсивность источника света, мы уменьшаем количество испускаемых фотонов. Когда мы дойдём до излучения отдельных фотонов, мы уже не сможем далее уменьшать интенсивность света без того, чтобы не выключить его совсем. Это фундаментальный квантово-механический предел «нежности» нашего исследования. Таким образом, всегда существует минимальное возмущение, которое мы вносим в движение электрона путём измерения его положения.

Что ж, всё это верно. Однако закон Планка говорит, что энергия единичного фотона пропорциональна его частоте (и обратно пропорциональна длине волны). Следовательно, используя свет всё меньшей и меньшей частоты (и, соответственно, всё большей длины волны), мы можем делать отдельные фотоны всё более «нежными». Однако и здесь есть загвоздка. Когда волна направляется на объект, получаемая информация будет достаточной для того, чтобы определить положение объекта с некоторой неустранимой погрешностью, равной длине волны. Для того чтобы получить интуитивное представление об этом важном факте, представим, что мы пытаемся определить положение большой скалы, находящейся немного ниже уровня моря, по влиянию, которое она оказывает на проходящие морские волны. Приближаясь к скале, волны образуют замечательно упорядоченную последовательность следующих одни за другими гребней и впадин. После прохождения над скалой форма волн искажается — верный признак наличия подводной скалы. Но подобно самым мелким делениям на линейке, отдельный цикл волны, образованный гребнем и впадиной, является мельчайшей единицей в последовательности волн, поэтому, если мы наблюдаем только возмущение в движении волн, мы можем определить положение скалы лишь с точностью, равной одному волновому циклу, или длине волны. В случае света составляющие его фотоны представляют собой, грубо говоря, отдельные волновые циклы (при этом высота циклов определяется числом фотонов); следовательно, при определении положения объекта фотон даёт точность, равную длине волны.

1 ... 28 29 30 31 32 33 34 35 36 ... 116
Перейти на страницу:
Тут вы можете бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин.
Комментарии