Большая Советская Энциклопедия (ТР) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Е. Д. Хануков.
Транспортный корабль
Тра'нспортный кора'бль в космонавтике, космический летательный аппарат , предназначенный для осуществления полётов (рейсов) между Землёй и искусственными космическими объектами (околоземными пилотируемыми кораблями, орбитальными станциями, автоматическими аппаратами) или между космическими объектами, находящимися на разных орбитах. Основное назначение Т. к. — доставка на околоземную орбиту автоматических и пилотируемых объектов (научно и хозяйственного назначения) и возвращение их на Землю; аппаратов (так называемых межорбитальных буксиров), способных переводить полезный груз на более высокие орбиты или на траектории полёта к Луне и планетам. Экипаж Т. к. может производить обслуживание, ремонт и профилактические осмотры орбитальных космических объектов, выполнять наблюдения и научно-технические исследования, участвовать в спасении космонавтов в аварийных ситуациях на орбите и т.д.
Т. к. может быть автоматическим или пилотируемым, одноразового или многоразового применения. Роль Т. к. одноразового применения выполняли некоторые космические корабли серии «Союз» (например, при доставке космонавтов на орбитальную станцию «Салют» ) и «Аполлон» (для доставки космонавтов на орбитальную станцию «Скайлэб»). Т. к. многоразового применения — основная часть многоцелевых универсальных космических систем («шаттл», или «челнок», — название, принятое в зарубежной литературе), которые в будущем (ориентировочно к 80-м гг. 20 в.) смогут заменить ракеты-носители и космические корабли одноразового применения.
А. А. Еременко.
Транспортный тоннель
Тра'нспортный тонне'ль городской, тоннель , сооружаемый на пересечении городских транспортных магистралей с интенсивным движением и служащий для пропуска в разных уровнях различных средств транспорта. Для пересечения транспортных магистралей пешеходами служат переходы . Расположение Т. т. увязывают с системой городского движения, планировкой и застройкой улиц и размещением подземных коммуникаций. Т. т. обычно имеет двускатный профиль. Т. т. включает, как правило, один закрытый (тоннельный) участок и два открытых (рамповых) участка, обеспечивающих двустороннее движение городского транспорта (в СССР обычно в 3 ряда в каждом направлении). Глубину заложения Т. т. назначают минимальной. Чаще всего Т. т. сооружают в открытых котлованах . Конструкцию закрытой части Т. т. обычно выполняют из сборного железобетона в виде замкнутой в поперечном сечении двухпролётной рамы . Конструкция открытых (рамповых) участков состоит из подпорных стенок , железобетонных фундаментных блоков и лотка, объединяемых в единую конструктивную систему омоноличиванием стыков. Конструкции Т. т. защищают от проникновения воды гидроизоляционным покрытием. В верхней части стен рамп устраивают обвязку из монолитного железобетона, которая служит для установки парапета. На парапете обычно монтируют опоры для светильников и подвески контактной сети троллейбуса.
Лит . см. при ст. Тоннель .
В. П. Волков.
Транспортный тоннель на площади Маяковского в Москве.
Транссудат
Транссуда'т (от транс... и лат. sudo — просачиваюсь), отёчная жидкость, скапливающаяся в полостях тела вследствие нарушения крово- и лимфообращения (например, брюшная водянка — асцит — при сердечной недостаточности или циррозе печени ). Образование Т. происходит без воспалительных изменений тканей, что отличает его от выпота .
Трансурановые элементы
Трансура'новые элеме'нты , химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном , то есть с атомным номером Z ³ 93. Известно 14 Т. э. Из-за относительно высокой скорости их радиоактивного распада Т. э. в заметных количествах не сохранились в земной коре. Возраст Земли около 5×109 лет, а период полураспада T 1/2 наиболее долгоживущих изотопов Т. э. меньше 107 лет. За время существования Земли Т. э., возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244 Pu — наиболее долгоживущего Т. э. (T 1/2 ~ 8×106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237 Np (T 1/2 ~ 2,14×106 лет) и 239 Pu (T 1/2 ~ 2,4×104 лет), которые образуются в результате ядерных реакций с участием ядер U.
Первые Т. э. были синтезированы в начале 40-х гг. 20 в. в Беркли (США) группой учёных под руководством Э. Макмиллана и Г. Сиборга , удостоенных Нобелевской премии за открытие и изучение этих элементов. Известно несколько способов синтеза Т. э. Они сводятся к облучению мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах или при взрыве ядерных устройств, можно получить все Т. э. до Fm (Z = 100) включительно. Процесс синтеза состоит либо в последовательном захвате нейтронов, причём каждый акт захвата сопровождается увеличением массового числа А , приводящим к b-распаду и увеличению заряда ядра Z , либо в мгновенном захвате большого числа нейтронов (взрыв) с длинной цепочкой b-распадов. Возможности этого метода ограничены, он не позволяет получать ядра с Z > 100. Причины — недостаточная плотность нейтронных потоков, малая вероятность захвата большого числа нейтронов и (что наиболее важно) очень быстрый радиоактивный распад ядер с Z > 100.
Элемент с Z = 101 (менделевий ) был открыт в 1955 при облучении 253 99 Es (эйнштейния) ускоренными a-частицами. Пять элементов с Z > 101 были получены на ускорителях заряженных частиц [циклотрон Объединённого института ядерных исследований (ОИЯИ; Дубна, СССР) и линейный ускоритель тяжёлых ионов «Хайлак» (Беркли, США)] в ядерных реакциях с ускоренными тяжёлыми ионами. Определяющий вклад в эти работы внесли группа учёных под руководством Г. Н. Флёрова (Дубна) и группа Г. Сиборга — А. Гиорсо (Лаборатория им. Лоуренса, Беркли). Существенные результаты были получены также в Окриджской национальной лаборатории США.
Для синтеза далёких Т. э. используется два типа ядерных реакций — слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём «испарения» нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения ~ 40—60 Мэв ). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10—12 Мэв , поэтому для «остывания» составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104—105 вероятность испарения одного нейтрона в 500—100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые «выживают» в результате снятия возбуждения, составляет всего 10—8 —10—10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102—106).
В ОИЯИ разработан новый метод синтеза Т. э., основанный на реакциях слияния ядер, причём в качестве мишеней используются плотно упакованные устойчивые ядра изотопов Pb, а в качестве бомбардирующих частиц сравнительно тяжёлые ионы Ar, Ti, Cr. Избыточная энергия ионов расходуется на «распаковку» составного ядра, и энергия возбуждения оказывается низкой (всего 10—15 Мэв ). Для снятия возбуждения такой ядерной системы достаточно испарения 1—2 нейтронов. В итоге получается весьма заметный выигрыш в выходе новых Т. э. Этим методом был осуществлен синтез Т. э. с Z = 100, Z = 104 и Z = 106.
В 1965 Флёров предложил использовать для синтеза Т. э. вынужденное деление ядер под действием тяжёлых ионов. Осколки деления ядер под действием тяжёлых ионов имеют симметричное распределение по массе и заряду с большой дисперсией (следовательно, в продуктах деления можно обнаружить элементы с Z значительно, большим, чем половина суммы Z мишени и Z бомбардирующего иона). Экспериментально было установлено, что распределение осколков деления становится шире по мере использования всё более тяжёлых частиц. Применение ускоренных ионов Xe или U позволило бы получить новые Т. э. в качестве тяжёлых осколков деления при облучении урановых мишеней. В 1971 в ОИЯИ были ускорены ионы Xe с помощью 2 циклотронов, которыми облучалась урановая мишень. Результаты показали, что новый метод пригоден для синтеза тяжёлых Т. э.