По ту сторону кванта - Леонид Пономарев
Шрифт:
Интервал:
Закладка:
Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить ее положение в каждый момент времени. Эта простейшая экспериментальная установка является иллюстрацией к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату х и импульс р. Необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.
Дополнительность — вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору. До него все были убеждены, что несовместимость двух типов приборов непременно влечет за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.
Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата х и импульс р — это те понятия, которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания
явление — > образ — > понятие — > формула
принцип дополнительности сказывается прежде всего на системе понятий квантовой механики и на логике ее умозаключений.
Принцип дополнительностиДело в том, что среди строгих положений формальной логики существует «правило исключенного третьего», которое гласит: из двух противоположных высказываний одно истинно, другое — ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия «волна» и «частица» действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причем для полного описания необходимо использовать их одновременно.
Люди, воспитанные на традициях классической физики, восприняли эти требования как некое насилие над здравым смыслом и поговаривали даже о нарушении законов логики в атомной физике. Бор объяснил, что дело здесь вовсе не в законах логики, а в той беспечности, с которой иногда без всяких оговорок используют классические понятия для объяснения атомных явлений. А такие оговорки необходимы, и соотношение неопределенностей Гейзенберга δx δp ≥ 1/2h точная запись этого требования на строгом языке формул.
Причина несовместимости дополнительных понятий в нашем сознании глубока, но объяснима. Дело в том, что познать атомный объект непосредственно — с помощью наших пяти чувств — мы не можем. Вместо них мы используем точные и сложные приборы, которые изобретены сравнительно недавно. Для объяснения результатов опытов нам нужны слова и понятия, а они появлялись задолго до квантовой механики и никоим образом к ней не приспособлены. Однако мы вынуждены ими пользоваться — у нас нет другого выхода: язык и все основные понятия мы усваиваем с молоком матери и, во всяком случае, задолго до того, как узнаем о существовании физики.
Принцип дополнительности Бора — удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений.
Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже — при попытках распространить его на другие области науки — выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность во всех случаях, даже далеких от физики.
Сам Бор любил приводить пример из биологии, связанный с жизнью клетки, роль которой вполне подобна значению атома в физике. Если атом — последний представитель вещества, который еще сохраняет его свойства, то клетка — это самая малая часть любого организма, которая все еще представляет жизнь в ее сложности и неповторимости. Изучить жизнь клетки — значит узнать все элементарные процессы, которые в ней происходят, и при этом понять, как их взаимодействие приводит к совершенно особому состоянию материи — к жизни.
При попытке выполнить эту программу оказывается, что одновременное сочетание такого анализа и синтеза неосуществимо. В самом деле, чтобы проникнуть в детали механизмов клетки, мы рассматриваем ее в микроскоп — сначала обычный, затем электронный — нагреваем клетку, пропускаем через нее электрический ток, облучаем, разлагаем на составные части… Но чем пристальнее мы станем изучать жизнь клетки, тем сильнее мы будем вмешиваться в ее функции и в ход естественных процессов, в ней протекающих. В конце концов, мы ее разрушим и поэтому ничего не узнаем о ней как о целостном живом организме.
И все же ответ на вопрос «Что такое жизнь?» требует анализа и синтеза одновременно. Процессы эти несовместимы, но не противоречивы, а лишь дополнительны — в смысле Бора. И необходимость учитывать их одновременно — лишь одна из причин, по которой до сих пор не существует полного отверз на вопрос о сущности жизни.
Как и в живом организме, в атоме важна целостность его свойств «волна — частица». Конечная делимость материи породила не только конечную делимость атомных явлений — она привела также X пределу делимости понятий, с помощью которых мы эти явления описываем.
Часто говорят, что правильно поставленный вопрос — уже половина ответа. Это не просто красивые слова.
Правильно поставленный вопрос — это вопрос о тех свойствах явления, которые у него действительно есть. Поэтому такой вопрос уже содержат в себе все понятия, которые необходимо использовать в ответе. На идеально поставленный вопрос можно ответить коротко: «да» или «нет». Бор показал, что вопрос «Волна или частица?» в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа «да» или «нет». Точно так же, как нет ответа у вопроса: «Что больше: метр или килограмм?», и у всяких иных вопросов подобного типа.
Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом. В мифологии такие случаи хорошо известны: нельзя разрезать на две части кентавра, сохранив при этом в живых и коня и человека.
НеделимостьАтомный объект — это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект — это нечто третье, не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать ее и без этого. В конце концов (надо признать правоту Борна), «…теперь атомный физик далеко ушел от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».
Когда Гейзенберг отбросил идеализацию классической физики — понятие «состояние физической системы, независимое от наблюдения», — он тем самым предвосхитил одно из следствий принципа дополнительности, поскольку понятия «состояние» и «наблюдение» — дополнительные в смысле Бора. Взятые в отдельности, они неполны и поэтому могут быть определены только совместно, друг через друга. Говоря строго, эти понятия вообще не существуют порознь: мы всегда наблюдаем не вообще нечто, а непременно какое-то состояние. И наоборот: всякое «состояние» — это вещь в себе до тех пор, пока мы не найдем способ его «наблюдения».
Взятые по отдельности понятия: волна, частица, состояние системы, наблюдение системы — это некие абстракции, не имеющие отношения к атомному миру, но необходимые для его понимания. Простые, классические картины дополнительны в том смысле, что для полного описания природы необходимо гармоничное слияние этих двух крайностей, но в рамках привычной логики они могут сосуществовать без противоречий лишь в том случае, если область их применимости взаимно ограничена.
Много размышляя над этими и другими похожими проблемами, Бор пришел к выводу, что это не исключение, а общее правило: всякое истинно глубокое явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышление в форме дополнительности ставит пределы точной формулировке понятий, соответствующих истинно глубоким явлениям природы. Такие определения либо однозначны, но тогда неполны, либо полны, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в рамках обычной логики. К таким понятиям относятся понятия «жизнь», «атомный объект», «физическая система» и даже само понятие «познание природы».