Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Педагогика » Эмбрионы, гены и эволюция - Рудольф Рэфф

Эмбрионы, гены и эволюция - Рудольф Рэфф

Читать онлайн Эмбрионы, гены и эволюция - Рудольф Рэфф

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 31 32 33 34 35 36 37 38 39 ... 127
Перейти на страницу:

Процесс видообразования, происходящий за один этап, можно воспроизвести экспериментально, как это было сделано в скрещивании между редькой Raphanus saliva и капустой Brassica oleracea. У обоих растений число хромосом 2n = 18. Гибриды образуются, но они полностью стерильны. Девять хромосом, полученных от одного из родительских видов, не конъюгируют с девятью хромосомами, полученными от другого, и нормального расхождения также не происходит. Изредка, однако, от этих гибридных растений удается получить диплоидные пыльцу и яйцеклетки; это те случаи, когда ни одна из девяти хромосом не претерпела редукционного деления мейоза. У растения, получившегося в результате слияния 2n-пыльцевого зерна одного вида с 2n-яйцеклеткой другого вида, число хромосом 2n = 36. Это тетраплоид, содержащий 9 пар хромосом от R. saliva и 9 пар от В. oleracea. Он плодовит и воспроизводится путем самоопыления. Однако тетраплоидное растение дает плодовитое потомство только при самоопылении, но не при возвратных скрещиваниях с тем или другим из родительских видов. Благодаря своей новой хромосомной конституции оно репродуктивно изолировано от обоих родительских видов и представляет собой новый вид, хотя и полученный искусственно. В природе полиплоидия подобного рода может возникнуть в результате слияния гамет от одного и того же (аутополиплоидия) или от разных (аллополиплоидия) видов. В обоих случаях наблюдается та же картина, что и описанная выше: тетраплоид репродуктивно изолирован от обоих диплоидных родительских видов. Любое скрещивание между растениями 2n и 4n дает триплоидных (3n) потомков. Эти растения жизнеспособны, но они стерильны, потому что обычно продуцируют сильно несбалансированные или анэуплоидные гаметы. В нормальных случаях при мейозе хромосомы конъюгируют; конъюгация хромосом возможна при наличии четного числа хромосомных наборов. Если же число наборов нечетное, как у триплоидов (3n), то нормальная конъюгация и расхождение хромосом нарушаются. В некоторых гаметах хромосомы каждого данного типа бывают представлены в двух экземплярах, а хромосомы другого типа - только в одном. При соединении такой несбалансированной гаметы с нормальной гаплоидной гаметой получается зигота, также несбалансированная по своей хромосомной конституции. В большинстве случаев такое состояние летально. Только при скрещивании одного такого тетраплоида с другим тетраплоидом они дают плодовитое 4n потомство. Изоляция подобного типа возникла в группе видов Gilia transmontana. Это низкорослые однолетние травянистые растения, произрастающие в пустыне Мохаве, в западной части США. Как указывает Дэй (Day) и независимо от нее Грант (Grant), в эту группу входит 5 самостоятельных видов, которые обычно самоопыляются. Два из этих видов - G. transmontana и G. malior - тетраплоиды, тогда как три других - G. minor, G. clokeyi и G. aliquata - диплоиды. Все экспериментальные скрещивания между любыми двумя из этих пяти видов оказались стерильными. Поэтому, несмотря на морфологическое сходство между этими видами и на их симпатричность, они не скрещиваются между собой. На основании морфологического сходства Дэй пришла к выводу, что G. transmontana - тетраплоидное производное двух диплоидов, G. minor и G. clokeyi, тогда как также тетраплоидный вид G. malior произошел от G. minor и G. aliquata. Современное распространение этих видов в сочетании с их хромосомной конституцией можно рассматривать как непрямое доказательство их возможного симпатрического происхождения.

В связи с этим способом видообразования следует привлечь внимание еще к одной особенности растений. Многие растения однодомные (мужские и женские цветки находятся на одном растении) и самоопыляющиеся. Благодаря этой их черте полиплоидия может выступать в качестве мгновенно возникающего изолирующего механизма. В норме продуцирование диплоидных мужских и женских гамет - событие редкое. Их последующее слияние происходит еще реже. Поэтому вероятность возникновения двух тетраплоидных организмов, которые могли бы затем скрещиваться между собой и дать начало новому виду, ничтожна. Однако способность растений к самооплодотворению устраняет это затруднение. У животных, которые в большинстве своем двудомны, развитие изолирующих механизмов такого типа маловероятно. Кроме того, механизмы определения пола у животных, почти всегда связанные с хромосомами или генами, затрудняют возникновение полиплоидии. Любое изменение дозы хромосом или генов, затрагивающее гены или хромосомы, связанные с определением пола, приводит к нарушениям в определении пола и к стерильности, а поэтому у животных полиплоидия действительно встречается очень редко. Следует отметить, однако, что в тех случаях, когда репродуктивные затруднения преодолены, как при партеногенетическом размножении, полиплоидия у животных все же наблюдается.

Вероятно, наилучшее представление о многочисленности особых случаях видообразования, а следовательно, и эволюции у растений дает следующая краткая формулировка Гранта, указывающая на важную роль алло- и автополиплоидии у высших растений:

«Основные особенности растений повлияли не только на природу вида у растений, но оказали также глубокое воздействие на их макроэволюцию... в филогенезе растений неоднократно имело место образование анастомозов между линиями, которые прежде были обособленными. Если у животных видообразование обычного типа приводит к формированию филогенетического древа, то у растений оно нередко ведет к образованию филогенетической сети». Это утверждение не следует понимать в том смысле, что симпатрическое видообразование присуще только растениям и происходит только путем образования полиплоидов. Просто механизм, в основе которого лежит полиплоидия, - самый эффективный и быстрый. Рассматривалась также возможность симпатрического видообразования у животных при участии этологической изоляции. Буш (Bush) обратился к этому способу, чтобы объяснить видообразование у некоторых видов насекомых, паразитирующих на растениях. Изменение одного гена может повлиять на выбор хозяина этими насекомыми, а если всего лишь один индивидуум выбирает себе в качестве хозяина новое растение вместо прежнего, то это приведет к его изоляции от всей остальной видовой популяции.

Существуют разнообразные способы видообразования и всевозможные механизмы, при помощи которых у растений и животных может возникнуть репродуктивная изоляция. Но в этом участвуют еще два важных элемента. Первый из них - время, которое занимает данное «событие», а второй - степень генетической дивергенции, необходимая для того, чтобы возникла изоляция. Поскольку общеизвестно, что аллопатрическое видообразование поглощает много времени, мы не будем пытаться доказывать это, а постараемся найти минимальные оценки двух параметров - времени и генетической дивергенции, исходя из допущения, что любые значения, превышающие эти оценки, должны быть достаточны также для возникновения изоляции и видообразования.

Время и генетическая дивергенция

Скорости и способы видообразования очень удобно рассмотреть на примере большой группы видов сем. Drosophilidae, эндемичных для Гавайских островов, которую так отлично изучил Карсон (Н. Carson) со своими сотрудниками и студентами. Наш выбор диктуется несколькими исключительными особенностями как Гавайского архипелага, так и обитающих на нем дрозофил. Эти острова хорошо изолированы от материка и поэтому, так же как и дарвиновские Галапагосы, могут служить природной лабораторией для исследования эволюции. Кроме того, геологический возраст разных островов, составляющих Гавайский архипелаг, хорошо установлен калий-аргоновым и палеомагнитным методами. Если двигаться по современной карте архипелага (рис. 3-7) с севера на юг, то острова становятся все моложе. Это обусловлено перемещением тихоокеанской литосферной плиты над «горячей точкой» под поверхностью Земли.

По мере миграции плиты (на северо-запад, со скоростью примерно 9 см/год) над этим местом возникал ряд вулканов. Так, остров Кауаи появился в плиоцене, примерно 5 млн. лет назад, а Оаху - 3 млн. лет назад. Три небольших острова - Молокаи, Мауи и Ланаи, - первоначально составлявшие одно целое, образовались 1,5 млн. лет назад, а позднее разделились. Наконец, самый большой и самый молодой остров Гавайи все еще находится над «горячей точкой», о чем свидетельствует продолжающаяся вулканическая активность. Самые древние части этого самого молодого острова сформировались в плейстоцене, несколько менее 1 млн. лет назад. Последовательное возникновение этих островов в сочетании с их изолированностью как от азиатского, так и от североамериканского материков создали такую ситуацию, которая позволяет проследить весь процесс заселения новой территории и новых ниш, изучая ныне существующие виды организмов. Дальнейшее преимущество связано с тем, что Гавайские острова находятся в тропиках, и поэтому их биота весьма разнообразна. Это ясно видно на примере сем. Drosophilidae, которое нам предстоит рассмотреть. По оценкам Карсона (Carson) и Канеширо (Kaneshiro), на относительно небольшой территории названных выше шести островов встречается более 500 эндемичных видов этих мух. Отсюда следует, что то событие, которое мы собираемся изучать, т.е. видообразование, происходило в этой изолированной, охарактеризованной во времени, среде с достаточной регулярностью.

1 ... 31 32 33 34 35 36 37 38 39 ... 127
Перейти на страницу:
Тут вы можете бесплатно читать книгу Эмбрионы, гены и эволюция - Рудольф Рэфф.
Комментарии