Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Век бифуркации. Постижение изменяющегося мира - Эрвин Ласло

Век бифуркации. Постижение изменяющегося мира - Эрвин Ласло

Читать онлайн Век бифуркации. Постижение изменяющегося мира - Эрвин Ласло

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 38
Перейти на страницу:

Эти основные понятия были применены в ряде областей науки, апробированы и разработаны различными способами. Исследования, непосредственно относящиеся к эволюционным понятиям, можно грубо разделить на две категории: эмпирические исследования, опирающиеся на наблюдение и эксперимент, и теоретические исследования, проводимые на формальных — математических — моделях поведения систем.

Эмпирические исследования

Исходным пунктом эмпирических исследований явилось наблюдение, согласно которому при подходящих условиях постоянный и интенсивный поток энергии, проходящий через систему, вынуждает ее переходить в состояния, характеризуемые более высоким уровнем свободной энергии и более низким уровнем энтропии. Как предсказал Илья Пригожий в 60-х годах и как подтвердил своими экспериментами, выполненными еще в 1968 г., биолог Гарольд Моровиц, поток энергии, проходящий через неравновесную систему в состоянии, далеком от равновесия, приводит к структурированию системы и ее компонент и позволяет системе принимать, использовать и хранить все возрастающее количество свободной энергии. Одновременно происходит увеличение сложности системы и убывание ее удельной энтропии.

Существенной мерой в ходе эволюции является не тотальный прирост свободной энергии в системе, а прирост плотности потока свободной энергии, который система поддерживает, сохраняет и затем использует. «Плотность потока энергии» есть мера свободной энергии, приходящейся за единицу времени на единицу объема; например, эрг/сек. см3. Восходя по шкале сложности систем, мы обнаруживаем, что величина плотности потока энергии возрастает. В сложной химической системе плотность потока свободной энергии выше, чем в одноатомном газе; в живой системе — выше, чем в любой сложной химической системе. Это различие указывает на основное направление эволюции, поток, сметающий на своем пути все препятствия, который определяет стрелу времени как в физическом, так и в органическом мире.

Зависимость между потоком энергии в единицу времени и изменением удельной энтропии и плотности потока свободной энергии существенна для ответа не только на вопрос о том, как системы эволюционируют в третье состояние, но и на вопрос о том, обязательно ли происходит подобная эволюция при наличии определенных условий. До 70-х годов исследователи склонялись к точке зрения, красноречиво изложенной французским биохимиком и микробиологом Жаком Моно, согласно которой эволюция в основном обусловлена случайными факторами. Но к 80-м годам многие ученые пришли к убеждению, что эволюция носит не случайный характер, а происходит с необходимостью, если определяющие ее параметры удовлетворяют соответствующим требованиям.

Лабораторные эксперименты и количественные формулировки подтверждают неслучайный характер эволюции систем в третьи состояния. Упорядоченная структура возникает всегда, когда сложные системы погружены в интенсивный и «не пересыхающий» поток энергии. Принципы, ответственные за это эволюционное явление, сводятся к следующему. Прежде всего, система должна быть открытой, т. е. должна подпитываться реагентами и выводить конечные продукты. Затем, система должна иметь достаточно разнообразный запас компонент и обладать достаточно сложной структурой, чтобы иметь возможность находиться более чем в одном динамическом стационарном состоянии (т. е. система должна быть мультистабильной). И последнее (по счету, но не по значению) условие: между основными компонентами системы должны существовать обратные связи и каталитические циклы.

Последнее требование (существование каталитических циклов) имеет под собой глубокую основу. Со временем такие циклы должны претерпевать естественный отбор, поскольку обладают замечательным свойством выживать в широком диапазоне условий. Каталитические циклы обладают высокой стабильностью и порождают реакции, протекающие с высокими скоростями. Циклы бывают двух типов: автокаталитические, когда продукт реакции катализирует свой синтез самого себя, и кросс-каталитические, когда два различных продукта (или группы продуктов) катализируют синтез друг друга.[6]

В сравнительно простых химических системах автокаталитические реакции имеют тенденцию доминировать, в то время как в более сложных процессах, характерных для биологических явлений, возникают целые цепочки кросс-каталитических «гиперциклов». Например, как показал биохимик Манфред Эй ген, молекулы нуклеиновых кислот переносят информацию, необходимую для самовоспроизведения и производства других ферментов. «Гиперцикл» (петля) может состоять из большого числа элементов; в конце концов многоступенчатая петля замыкается, образуя кросс-каталитический цикл, замечательный и быстрыми скоростями реакций, и устойчивостью при самых различных условиях, описываемых специальными параметрами. Неудивительно, что каталитические гиперциклы лежат в основе стабильности последовательности нуклеиновых кислот, кодирующих структуру живых организмов; на более высоком эволюционном уровне они лежат и в основе устойчивости биологических видов и всех экологии в биосфере нашей планеты.

При достаточной продолжительности и неиссякающем потоке энергии, действующем на организованные системы в допустимых диапазонах параметров интенсивности, температуры и концентрации, элементарные каталитические циклы включаются в возникающие гиперциклы. В теории эволюционных систем этот процесс называется конвергенцией. Конвергенция не приводит к увеличению сходства между системами и в конечном счете к единообразию (как в случае конвергенции идеологий и социоэкономических систем), поскольку эволюционирующие системы обладают функциональной полнотой и дополняют друг друга.

Процесс эволюционной конвергенции приводит к образованию новых систем более высокого уровня, которые селективно исключают многие детали динамики своих подсистем и налагают внутренние связи, вынуждающие подсистемы переходить в коллективный режим функционирования. Этот режим, отражающий динамику возникающих систем, проще, чем сумма некоординированных функций подсистем.

Конвергенция происходит во всех сферах эволюции. Более того, эволюция может развиваться именно потому, что возникают системы все более высокого уровня с более простой исходной структурой. На каждом уровне системы третьего состояния используют потоки свободной энергии, поступающие из окружающей среды. Когда плотность свободной энергии, поддерживаемая в системах, достигает достаточно высокого уровня, система обретает структурную сложность. Если бы такой процесс продолжался бесконечно, то был бы достигнут функциональный оптимум, за которым дальнейшее увеличение сложности не давало бы вклада в динамическую эффективность; по достижении функционального оптимума эволюция могла бы приводить только к неселективному дрейфу. Но из-за конвергенции систем третьего состояния на все более высоких уровнях организации структурно более простые суперсистемы повторяют весь процесс, вследствие чего плотности свободной энергии используются все более полно структурами возрастающей сложности.

Резюмируя, можно сказать, что процессы эволюции порождают на определенных уровнях организации первоначально сравнительно простые динамические системы. Затем процессы эволюции приводят к прогрессирующему усложнению (комплексификации) существующих систем и в конечном счете к созданию более простых систем на следующем, более высоком организационном уровне, на котором комплексификация начинается заново. Таким образом, эволюция движется от более простого к более сложному и от более низкого к более высокому уровню организации.

Эмпирические данные, подтверждающие существование такого эволюционного процесса, неоспоримы. Различные атомные элементы конвергируют в молекулярные образования; некоторые определенные молекулы конвергируют в кристаллы и органические макромолекулы; те в свою очередь конвергируют в клетки и субклеточные фрагменты — основу жизни; одноклеточные организмы конвергируют в многоклеточные виды; а самые разнообразные виды конвергируют в экологии. По достижении каждого уровня более сложные системы начинают развиваться на новом уровне. На уровне атомов структуры образуются во времени от водорода до урана и далее; на уровне молекул из простых химических молекул синтезируются более сложные полимеры; на уровне живого виды эволюционируют от одноклеточных до многоклеточных форм, а на еще более богатом экологическом уровне незрелые экосистемы превращаются в зрелые экосистемы.

Изменения в системах и эволюция происходят потому, что динамические системы в третьем состоянии нестабильны. Они обладают верхним порогом динамической устойчивости, за который системы стремятся выйти в условиях изменяющейся среды. Когда система достигает порога устойчивости, в ней возникает критическая неустойчивость. Эксперименты показывают, что сильно неравновесные динамические системы можно «вытолкнуть» из их стационарных состояний, изменив критические параметры. Такие системы оказываются чрезвычайно чувствительными к изменениям значений тех параметров, которые определяют функционирование их каталитических циклов. Когда критические значения изменяются, системы вступают в переходную фазу, характеризующуюся неопределенностью, хаосом и внезапным увеличением производства энтропии. Переходная фаза завершается, когда системы дезорганизуются, распадаясь на стабильные подсистемы — или находят новое множество динамических стационарных состояний.

1 ... 29 30 31 32 33 34 35 36 37 38
Перейти на страницу:
Тут вы можете бесплатно читать книгу Век бифуркации. Постижение изменяющегося мира - Эрвин Ласло.
Комментарии