6a. Электродинамика - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Мы можем приближенно увидеть, к чему нас приведет интеграл (28.15). Если, зафиксировав r12, провести интегрирование по t2в пределах от -Ґ до +Ґ,то s212 тоже будет изменяться от -Ґ до +Ґ. Но основной вклад даст участок по t2шириной At2=2·а2/2r12с с центром в момент t1-r12/c.Пусть функция F(s2) при s2=0 принимает значение К, тогда интегрирование по t2дает приблизительно KjmDt2, или
Разумеется, величину jm следует взять в момент t2=t1-r12/c, так что (28.15) принимает вид
Если выбрать K=q2с/4pe0а2, то мы придем прямо к запаздывающему решению уравнений Максвелла для потенциалов, причем автоматически возникает зависимость 1/r! И все это получилось из простого предположения, что потенциал в одной точке пространства-времени зависит от плотности токов во всех других точках пространства-времени с весовым множителем, в качестве которого взята некая функция четырехмерного расстояния между двумя точками. Эта теория тоже дает конечную электромагнитную массу электрона, а соотношение между энергией и массой как раз такое, какое требуется в теории относительности. Ничего другого не могло и быть, ибо теория релятивистски инвариантна с самого начала.
Однако и этой теории и всем другим описанным нами теориям можно предъявить тяжкое обвинение. Все известные нам частицы подчиняются законам квантовой механики, поэтому необходима квантовомеханическая форма электродинамики. Свет ведет себя подобно фотонам. Это уже не
100-процентная теория Максвелла. Следовательно, электродинамика должна быть изменена. Мы уже говорили, что упорное старание исправить классическую теорию может оказаться напрасной тратой времени, ибо в квантовой электродинамике трудности могут исчезнуть или будут разрешены другим образом. Однако и в квантовой электродинамике трудности не исчезают. В этом кроется одна из причин, почему люди потратили столько времени, пытаясь преодолеть классические трудности и надеясь, что если они смогут преодолеть их, то после квантового обобщения уравнений Максвелла все будет в порядке. Однако и после такого обобщения трудности не исчезают.
Квантовые эффекты, правда, приводят к некоторым изменениям. Изменяется формула для масс, появляется постоянная Планка h, но ответ по-прежнему выходит бесконечным, если вы не обрезаете как-то интегрирование, подобно тому как мы обрезали интеграл при r=а в классической теории. Ответ при этом зависит от характера обрезания. К сожалению, я не могу вам показать, что трудности в основном те же самые, ибо вы еще слишком мало знаете о квантовой механике, а о квантовой электродинамике — и того меньше. Поэтому вам придется поверить мне на слово, что и квантовая электродинамика Максвелла приводит к бесконечной массе точечного электрона.
Оказывается, однако, что до сих пор никому не удалось даже приблизиться к самосогласованному квантовому обобщению на основе любой из модифицированных теорий. Идее Борна и Инфельда никогда не суждено было стать квантовой теорией. Не привели к удовлетворительной квантовой теории опережающие и запаздывающие волны Дирака и Уилера — Фейнмана. Не привела к удовлетворительной квантовой теории и идея Боппа. Так что и до сего дня нам не известно решение этой проблемы. Мы не знаем, как с учетом квантовой механики построить самосогласованную теорию, которая не давала бы бесконечной собственной энергии электрона или какого-то другого точечного заряда. И в то же время нет удовлетворительной теории, которая описывала бы неточечный заряд. Так эта проблема и осталась нерешенной.
Если вы вздумаете попытать счастья и построить теорию, полностью удалив действие электрона на себя, так чтобы электромагнитная масса не имела смысла, а затем будете делать из нее квантовую теорию, то могу вас заверить — трудностей вы не избежите. Экспериментально доказано существование электромагнитной инерции и тот факт, что часть массы заряженных частиц — электромагнитная по своему происхождению.
В старых книгах часто утверждалось, что поскольку природа не подарила нам двух одинаковых частиц, из которых одна нейтральная, а другая заряженная, то мы никогда не сможем сказать, какая доля массы является электромагнитной, а какая механической. Однако оказалось, что природа все же была достаточна щедра и подарила нам именно два таких объекта, так что, сравнивая наблюдаемую массу заряженной частицы с массой нейтральной, мы можем сказать, существует ли электромагнитная масса. Возьмем, например, нейтрон и протон. Они взаимодействуют с огромной силой — ядерной силой, детали происхождения которой нам неизвестны. Однако, как мы уже говорили, ядерные силы обладают одним замечательным свойством. По отношению к этим силам нейтрон и протон в точности одинаковы. Насколько мы сейчас можем судить, ядерные силы между двумя нейтронами, нейтроном и протоном и двумя протонами совершенно одинаковы. Отличаются эти частицы только сравнительно слабыми электромагнитными силами; по отношению к ним протон и нейтрон отличаются, как день и ночь. Вот это нам как раз и нужно. Итак, мы имеем две частицы, одинаковые с точки зрения сильных взаимодействий и различных с точки зрения электрических. И они имеют небольшую разницу в массах. Разница масс между протоном и нейтроном, выраженная в единицах энергии покоя mc2, составляет 1,3 Мэв, что соответствует 2,6 электронным массам. Классическая теория предсказывает для радиуса протона величину между 1/3 и 1/2радиуса электрона, или около 10-13 см. Конечно, на самом деле следует пользоваться квантовой теорией, но по какой-то странной случайности все константы, 2p, h, и т. д., комбинируются так, что приблизительно дают тот же самый результат, что и классическая теория. Одна беда: знак оказывается неверным! Нейтрон на самом деле тяжелее протона.
Природа дала нам еще несколько других пар и троек частиц, которые, за исключением электрического заряда, во всех остальных отношениях оказываются в точности одинаковыми. Они взаимодействуют с протонами и нейтронами посредством так называемого «сильного» взаимодействия. В таких взаимодействиях все частицы данного сорта, скажем p-мезон, ведут себя во всех отношениях как одна и та же частица, за исключением их электрического заряда.
В табл. 28.1 мы приводим список таких частиц вместе с их массами. Заряженные p-мезоны имеют массу 139,6 Мзв, а нейтральный p0-мезон на 4,6 Мэв легче. Эту разность масс мы считаем электромагнитной. Она соответствовала бы частице с радиусом от 3 до 4·10-14 см. Вы видите из таблицы, что разницы масс других частиц того же масштаба.
Фиг. 28.5. В некоторые моменты нейтрон может представлять собой протон, окруженный облаком отрицательного p-мезона.
Однако размеры этих частиц можно определить и другими методами, например по кажущемуся диаметру при высокоэнергетических соударениях. Таким образом, электромагнитная масса, по-видимому, находится в согласии с электромагнитной теорией, если мы обрезаем интеграл от энергии поля на радиусе, полученном этими другими методами. Вот почему мы верим, что разница все же обусловлена электромагнитной массой.
Вас, конечно, беспокоят разные знаки разности масс в таблице. Нетрудно понять, почему заряженная частица должна быть тяжелее нейтральной. Но что можно сказать о таких парах, как нейтрон и протон, где наблюдаемая разность масс оказывается совсем другой? Эти частицы оказываются довольно сложными, и вычисление их электромагнитной массы более хитро. Например, хотя нейтрон в целом нейтрален, у него все же есть внутреннее распределение заряда и равен нулю только суммарный заряд. Мы думаем, что нейтрон, по крайней мере в некоторые моменты времени, выглядит как протон, окруженный «облаком» отрицательного p-мезона (фиг. 28.5). И несмотря на то, что нейтрон «нейтрален», т. е. полный его заряд равен нулю, у него все же есть какая-то электромагнитная энергия (например, у него есть магнитный момент), так что без детальной теории внутренней структуры судить о знаке электромагнитной разности масс нелегко.
Мне хотелось бы подчеркнуть лишь следующие особенности:
1. Электромагнитная теория предсказывает существование электромагнитной массы, но она тут же терпит фиаско, ибо оказывается несамосогласованной. Это в равной мере относится и к квантовым модификациям.