Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов

(Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов

Читать онлайн (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 63
Перейти на страницу:

Сами дегустаторы в курсе всех этих трудностей. «Во многих планах… {система оценивания} лишена смысла», — говорит редактор журнала «Уайн энд спирит мэгэзин»{141}. А по мнению бывшего редактора «Уайн Энтузиаст», «чем глубже ты во все это погружаешься, тем больше понимаешь, насколько оно ошибочно и обманчиво»{142}. Тем не менее система оценивания процветает. Почему? Сами дегустаторы говорят, что когда они пытаются определить качество вина, используя систему звездочек или простейшие словесные ярлыки наподобие «хорошее», «плохое», «безобразное», их мнение звучит неубедительно. Но стоит перейти к использованию цифр, как покупатели начинают относиться к оценкам словно к божественному откровению. Как бы ни были сомнительны количественные оценки, именно они дают покупателям уверенность, что среди многообразия марок, производителей и урожаев им, словно в стоге сена, удастся отыскать золотую иголку (или хотя бы серебряную, если бюджет не позволяет).

Если качество вина (или сочинения) в самом деле может быть подвергнуто измерению в числовом выражении, то перед теорией измерения встает два вопроса. Во-первых, как получить это число на основе ряда отличающихся друг от друга измерений? Во-вторых, имея в виду, что число измерений ограничено, как вычислить вероятность того, что оценка верна? Рассмотрим эти вопросы, поскольку независимо от того, объективен или субъективен источник данных, теория измерения ставит себе целью найти на них ответы.

Ключ к пониманию измерения — постижение природы разброса данных, обусловленного случайной ошибкой. Предположим, мы попросили пятнадцать дегустаторов оценить некоторое вино, или же предложили оценить его несколько раз в разные дни одному и тому же дегустатору, или прибегли к обеим процедурам. Мы можем подвести итоги оценивания, используя усреднение полученных оценок. Однако важную информацию содержит не только среднее значение: если все пятнадцать дегустаторов выставляют оценку 90, это одно, а если они выставляют оценки 80, 81, 82, 87, 89, 89, 90, 90, 90, 91, 94, 97, 99 и 100 — это совсем другое. Среднее значение обоих наборов данных одно и то же, но они различаются разбросом данных относительно этого среднего. А поскольку распределение данных — важный источник информации, для его описания математики предложили количественную меру разброса. Эта мера называется выборочным стандартным отклонением. Кроме того, математики измеряют разброс посредством квадратичной меры, которую называют выборочной дисперсией.

Стандартное отклонение показывает, насколько данные по выборке близки к среднему — или, в практическом смысле, какова погрешность измерения. Если оно невысоко, все данные группируются вокруг среднего. Например, для случая, когда все дегустаторы поставили вину оценку 90, стандартное отклонение равно 0, указывая на то, что все измерения идентичны среднему значению. В случае же высокого стандартного отклонения данные разбросаны относительно среднего. Например, когда вино оценивается дегустаторами в диапазоне от 80 до 100, выборочное стандартное отклонение равно 6. Это означает, что на практике большинство оценок попадет в диапазон от −6 до +6 относительно среднего. В рассмотренном случае о вине можно с высокой степенью уверенности сказать, что его истинная оценка, скорее всего, относится к диапазону от 84 до 96.

Пытаясь понять значение своих измерений, ученые XVIII–XIX вв. сталкивались с теми же проблемами, что и скептически настроенные ценители хороших вин. Ибо если группа исследователей осуществляет ряд наблюдений и измерений, результаты почти всегда получаются разными. Один астроном мог столкнуться с неблагоприятными погодными условиями, другой — покачнуться из-за порыва ветра, третий, возможно, только что вернулся от Уильяма Джеймса, с которым вместе дегустировал мадеру. В 1838 г. математик и астроном Ф.В. Бессель выделил одиннадцать классов случайных ошибок, которые могут возникнуть в ходе любого наблюдения с использованием телескопа. Даже если один и тот же астроном осуществляет ряд повторных измерений, результаты могут различаться из-за таких факторов, как неустойчивая острота зрения и влияние температуры воздуха на аппаратуру. Поэтому астрономам пришлось разбираться, как на основе ряда несовпадающих измерений установить истинное положение небесного тела. Но из того, что ценители вин и ученые сталкиваются с одной и той же проблемой, совсем не обязательно следует, что для них годится одно и то же решение. Можно ли выделить универсальные характеристики случайной ошибки, или же ее природа зависит от контекста?

Одним из первых предположение о том, что для разных типов измерений характерны одни и те же особенности, выдвинул Даниил Бернулли, племянник Якоба Бернулли. В 1777 г. он уподобил случайную ошибку в астрономическом наблюдении отклонениям в траектории выпущенной из лука стрелы. В обоих случаях, рассуждал он, цель — истинное значение измеряемой переменной или же «яблочко» мишени — располагается где-то посреди, а наблюдаемые результаты группируются вокруг нее, причем большинство должны лежать в окрестностях цели, и лишь немногие выпадают за их пределы. Закон, который Бернулли предложил для описания этого распределения, оказался неверен, однако важно само понимание того, что распределение ошибок лучника может быть сходно с распределением ошибок в наблюдениях астрономов.

Идея о том, что распределение ошибок подчиняется некому универсальному закону, который называют законом случайного распределения ошибок, является основополагающей для теории измерения. И вот что примечательно: допущение состоит в том, что при условии удовлетворения определенных условий довольно общего характера установить истинное значение некоторой переменной на основе ряда измерений можно с использованием одного и того же математического аппарата. Если в дело вступает универсальный закон, то задача установления истинного положения небесного тела на основе ряда наблюдений астрономов приравнивается к задаче нахождения центра мишени на основе дырочек от стрел или определения «качества» вина на основе ряда экспертных оценок. Именно поэтому математическая статистика — последовательная и согласованная область, а не просто набор трюков: неважно, осуществляете ли вы ряд измерений для того, чтобы установить положение Юпитера в 4 часа утра на Рождество или средний вес булок с изюмом, выходящих с конвейера, распределение ошибок будет одним и тем же.

Однако отсюда не следует, что случайная ошибка — единственный вид ошибок, которые могут повлиять на измерение. Если половина дегустаторов предпочитает красное вино, а другая половина — белое, однако во всех остальных отношениях они сходятся в своих суждениях (и предельно последовательны в их вынесении), то оценка каждого конкретного вина не будет определяться законом случайного распределения ошибок: распределение получится резко двугорбым, причем причиной появления одного из пиков станут любители красного вина, а другого — любители белого. Но даже в тех случаях, когда применимость закона случайного распределения ошибок не столь очевидна (начиная от футбольного тотализатора{143} и заканчивая измерением коэффициента интеллекта), зачастую он все же оказывается применим. Много лет назад мне в руки попали несколько тысяч регистрационных карточек покупателей компьютерной программы, которую разработал для восьми- и девятилетних школьников мой приятель. Продажи шли не так хорошо, как ожидалось. Кто же покупал программу? После некоторых подсчетов я установил, что наибольшее число пользователей приходится на семилетних, указывая на нежелательное, но не то чтобы неожиданное расхождение. Но вот что самое удивительное: когда я построил гистограмму зависимости количества пользователей от возраста, взяв семь лет за среднее значение, я обнаружил, что построенный мною график принял крайне знакомую форму — форму закона случайного распределения ошибок.

Одно дело — подозревать, что лучники и астрономы, химики и маркетологи сталкиваются с одним и тем же законом распределения ошибок, и совсем другое — самому натолкнуться на частный случай этого закона. Подталкиваемые необходимостью анализировать данные астрономических наблюдений ученые, такие как Даниил Бернулли и Лаплас, постулировали в конце XVIII в. несколько вариантов закона, оказавшихся неверными. Однако выяснилось, что математическая функция, верно отражающая закон случайного распределения ошибок, — колоколообразная кривая — все это время была у них под носом. За много десятилетий до них она была открыта в Лондоне в контексте решения совсем иных задач.

Среди троих ученых, благодаря которым на колоколообразную кривую обратили внимание, реже всех воздается по заслугам именно ее первооткрывателю. Абрахам де Муавр совершил свое открытие в 1733 г., когда ему было за шестьдесят, однако до появления второго издания его книги «Об измерении случайности», вышедшего в свет пять лет спустя, об этом никто не знал. Де Муавр пришел к искомой форме кривой, когда пытался аппроксимировать числа, заполняющие треугольник Паскаля значительно дальше той строки, на которой оборвал его я, — сотнями и даже тысячами строк ниже. Когда Якоб Бернулли обосновывал свой вариант закона больших чисел, ему пришлось столкнуться с некоторыми свойствами чисел, появляющихся в этих строках. А числа действительно очень велики: например, одно из чисел в двухсотой строке треугольника Паскаля состоит из пятидесяти девяти цифр! Во времена Бернулли, да и вообще до тех пор, пока не появились компьютеры, эти числа было очень трудно высчитать. Именно поэтому, как я сказал, Бернулли обосновывал свой закон больших чисел, используя различные способы приближенного вычисления, что снижало практическую значимость результатов его работы. Де Муавр со своей кривой осуществил несравненно более точную аппроксимацию и потому значительно улучшил оценки Бернулли.

1 ... 32 33 34 35 36 37 38 39 40 ... 63
Перейти на страницу:
Тут вы можете бесплатно читать книгу (Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов.
Комментарии