Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Пятьсот двадцать головоломок - Генри Дьюдени

Пятьсот двадцать головоломок - Генри Дьюдени

Читать онлайн Пятьсот двадцать головоломок - Генри Дьюдени

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 62
Перейти на страницу:

69. Расстояние от Англчестера до Клинкертона составляет 200 миль. Поезд прошел 50 миль со скоростью 50 миль/ч и 150 миль со скоростью 30 миль/ч. Если бы поломка произошла на 50 миль дальше, то поезд прошел бы 100 миль со скоростью 50 миль/ч и 100 миль со скоростью 30 миль/ч.

70. Когда Браун оставил позади всего лишь ⅙, или , всей дистанции, Томкинс уже прошел ⅚ минус , или , всей дистанции. Следовательно, скорость Томкинса в раза больше скорости Брауна. Брауну осталось пробежать ⅚, а Томкинсу — только ⅙ всей дистанции. Следовательно, Браун, чтобы прибежать хотя бы одновременно, должен развить скорость, в 5 раз превышающую скорость Томкинса, то есть в 5 раз большую , или бежать в раза быстрее, чем он бежал первоначально. Однако вопрос ставился не «во сколько раз», а «на сколько», а «в раза быстрее» — это все равно, что быстрее на первоначальной скорости Брауна. Правильным ответом, следовательно, будет: на 20¼ первоначальной скорости быстрее, хотя похоже на то, что такая рекомендация практически неосуществима.

71. Утверждение о равенстве средних скоростей ошибочно. В действительности средние скорости кораблей не равны. Первый корабль проходит милю за ч в одном направлении и за ⅛ ч в обратном. Полусумма этих дробей равна . Следовательно, средняя скорость, с которой первый корабль проходит 400 миль, равна 1 миле за ч. Средняя скорость второго корабля составляет 1 милю за ч.

72. Расстояние между двумя пунктами равно 18 км. Точки встречи отстоят от A и B на 10 и 12 км соответственно. Умножьте 10 (первое расстояние) на 3 и вычтите второе расстояние — 12. Что может быть проще? Испробуйте другие расстояния до точек встречи (следя за тем, чтобы первое расстояние составляло более ⅔ второго) и вы обнаружите, что это правило действует с неизменным успехом.

73. Собака бежала со скоростью 16 км/ч. Ключом к решению задачи служат следующие рассуждения. Расстояние, которое человеку осталось пройти рядом с собакой, составляло 81 м, или 34 (пес возвращался 4 раза), а длина дорожки равнялась 625 м, или 54. Поэтому разность скоростей (выраженных в км/ч) человека и собаки (то есть 12) и сумма их скоростей (20) должны находиться в отношении 3 : 5.

74. Вполне очевидно, что Бакстер догонит Андерсона через один час, поскольку к этому времени они пройдут по 4 км в одном направлении. Далее, скорость собаки составляет 10 км/ч; следовательно, за этот час она пробежит 10 км! Когда эту головоломку предложили одному французскому профессору математики, тот воскликнул: «Mon Dieu, quelle sґerie!»,[31] совершенно не заметив, как просто она решается.

75. Девять исследователей A, B, C, D, E, F, G, H, J проезжают 40 миль, затратив на это по полному баку горючего. Затем A передает по 1 галлону остальным восьми участникам и поворачивает назад, причем у него остается 1 галлон на обратную дорогу. Остальные восемь участников едут еще 40 миль, затем B передает по 1 галлону семи другим исследователям. Двух галлонов ему как раз хватает на обратный путь. Семеро исследователей проезжают еще 40 миль, затем C передает остальным шести по 1 галлону и возвращается домой, затратив на обратный путь 3 галлона. Шестеро исследователей проезжают еще 40 миль, после чего D передает каждому по 1 галлону и возвращается назад. Пятеро оставшихся проезжают еще 40 миль, затем E дает каждому по 1 галлону и возвращается назад. Теперь уже четверо исследователей продвигаются еще на 40 миль в глубь пустыни, F раздает каждому по 1 галлону и возвращается назад. G, H, J преодолевают еще 40 миль, G дает каждому по 1 галлону и едет назад. H и J проезжают еще 40 миль, H отдает 1 галлон J и возвращается. Наконец, последний путешественник J проезжает еще 40 миль, располагая 9 галлонами на обратный путь. Таким образом, J достигает пункта, расположенного в 360 милях от начального. Это наибольшее расстояние, которое можно проехать по прямой при заданных условиях.

76. Уокинхолм складывает 5 рационов на 90-мильной отметке (см. рисунок) и возвращается на базу (5 дней). Затем он оставляет 1 рацион на отметке 85 миль и возвращается к отметке 90 миль (1 день). Один рацион профессор оставляет на отметке 80 миль и возвращается снова к отметке 90 миль (1 день). Переносит 1 рацион на отметку 80 миль, возвращается к отметке 85 миль, подбирает оставшийся там 1 рацион и переносит его на отметку 80 миль (1 день). «Забрасывает» 1 рацион на отметку 70 миль и возвращается к отметке 80 миль (1 день), затем возвращается на базу (1 день). Таким образом, на отметках 70 и 90 миль остается по 1 рациону. Уокинхолм переносит 1 рацион на отметку 5 миль и возвращается на базу (1 день). Если ему нужно пройти 20 миль, то он может это сделать, дойдя до отметки 10 миль и вернувшись на базу. Переносит 4 рациона на отметку 10 миль и возвращается на базу (4 дня). Оставляет 1 рацион на отметке 10 миль и возвращается к отметке 5 миль, подбирает оставленный там 1 рацион и переносит его к отметке 10 миль (1 день). Переносит 2 рациона на отметку 20 миль и возвращается к отметке 10 миль (2 дня). Переносит 1 рацион к отметке 25 миль и возвращается к отметке 20 миль (1 день). Оставляет 1 рацион на отметке 30 миль, возвращается к отметке 25 миль, забирает оставленный там 1 рацион и переносит его на отметку 30 миль (1 день). Идет к отметке 70 миль (2 дня). Идет на базу (1½ дня). Всего 23½ дня.

Предпринимались попытки уменьшить это время, но все они были основаны на трюках, так или иначе запрещенных. Например, Уокинхолма «вынуждали» оставлять не целый суточный рацион, а лишь его часть, совершать марш-бросок или съедать суточный рацион перед уходом с очередной отметки, чтобы он мог нести еще два суточных рациона и т. п. В последнем случае Уокинхолм на самом деле нес бы три рациона: один в желудке и два за плечами!

Если бы маршрут профессора пролегал по пустыне, то кратчайшее время равнялось бы 86 дням, а поступать следовало бы так.

Сложить 42 рациона в 10 милях от базы, вернуться на базу (42 дня). Отнести 1 рацион на отметку 15 миль, вернуться к первому складу в 10 милях от базы (1 день). Оставить 20 рационов в 20 милях от базы и вернуться к складу, расположенному в 10 милях от базы (20 дней). Отнести 1 рацион на расстояние 20 миль от базы и вернуться в точку, отстоящую на 15 миль от базы, взять ранее оставленный там 1 рацион и перенести его к отметке 20 миль (1 день). Перенести 10 рационов в точку, отстоящую на 30 миль от базы, и вернуться к отметке 20 миль (10 дней). Отнести 1 рацион к отметке 35 миль и вернуться к отметке 30 миль (1 день). Отнести 4 рациона на отметку 40 миль и вернуться к отметке 30 миль (4 дня). Отнести 1 рацион к отметке 40 миль и вернуться к отметке 35 миль. Взять там 1 рацион и перенести его к отметке 40 миль (1 день). Отнести 2 рациона в точку, отстоящую на 50 миль от базы, и вернуться к отметке 40 миль (2 дня). Отнести 1 рацион к отметке 55 миль и вернуться к отметке 50 миль (1 день). Перенести 1 рацион к отметке 60 миль и вернуться к отметке 55 миль. Взять там 1 рацион и перенести его на отметку 60 миль (1 день). Совершить оттуда переход до конечного пункта маршрута (2 дня). Всего — 86 дней.

77. Если человек, выйдя из A, пройдет 1⅔ км со скоростью 5 км/ч, то на это он затратит 20 мин. Обратный путь со скоростью 4 км/ч займет у приятелей 25 мин. Таким образом, человек догонит приятеля-инвалида в 12.35. Последний к тому времени проедет ⅔ км за 35 мин со скоростью 1 км/ч.

78. Предположим, что поезд идет в течение часа и имеет невероятную длину 3 км. Тогда (см. рисунок) за это время он пройдет от B до C 60 км, а пассажир переместится от A до C, или на 63 км. С другой стороны, если бы пассажир шел от паровоза в хвост поезда, то поезд успел бы пройти расстояние от B до C (снова 60 км), в то время как пассажир переместился бы лишь на расстояние от B до C, то есть на 57 км. Следовательно,в первом случае скорость пассажира относительно железнодорожного полотна составляет 63, а во втором — 57 км/ч[32].

79. Поскольку поезд идет 5 ч, разделим путь на 5 равных интервалов. Когда леди выезжает из Вюрцльтауна, 4 встречных поезда уже находятся в пути, а пятый лишь отправляется со станции. Каждый из этих 5 поездов она встретит. Когда леди проедет ⅕ пути, из Мадвилля отправится новый встречный поезд, когда она проедет ⅖ пути — еще один, ⅗ — еще один, ⅘ — еще один и, наконец, когда она прибудет в Мадвилль, оттуда как раз будет отправляться очередной, пятый, поезд. Если мы примем, как и следует сделать, что она не встречает «по пути» ни этот последний поезд, ни тот, который прибыл в Вюрцльтаун, когда ее поезд отправлялся оттуда, то по дороге из Вюрцльтауна в Мадвилль леди повстречает 9 поездов.

1 ... 32 33 34 35 36 37 38 39 40 ... 62
Перейти на страницу:
Тут вы можете бесплатно читать книгу Пятьсот двадцать головоломок - Генри Дьюдени.
Комментарии