Категории
Самые читаемые
PochitayKnigi » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (КЛ) - БСЭ БСЭ

Большая Советская Энциклопедия (КЛ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (КЛ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 78
Перейти на страницу:

а Прочность на отрыв резины к металлу. бИспытания на образцах древесины сосны. вИспытания на образцах этрола. гИспытания на образцах непластифицированного поливинилхлорида.

  По функциональному назначению К. подразделяются на конструкционные, неконструкционные и специальные. К конструкционным К. относят композиции, обеспечивающие передачу динамических и статических нагрузок от одной части детали или изделия к другой, сопряжённой с ней посредством клеевой плёнки. Основные требования, предъявляемые к К. этой группы: достаточно высокая прочность при различных видах нагружения в интервале температур эксплуатации изделия, отсутствие ползучести под действием длительной нагрузки и т.п. Неконструкционные К. — композиции, применяемые для приклеивания декоративных, облицовочных или изоляционных материалов и покрытий, контровки резьбовых соединений, крепления мелких ненагруженных деталей (датчиков различного назначения, токопроводящих элементов электронных приборов и т.п.). К специальным К. относят композиции, обладающие дополнительными функционально важными свойствами, например токопроводящие К., оптические К., медицинские К. и т.п.

  Основное достоинство К. — простота технологии и малая трудоёмкость их применения. Клеевые соединения обладают высокой прочностью, вибростойкостью, герметичностью и другими ценными показателями, что обусловливает всё возрастающие масштабы применения К. в различных областях народного хозяйства и быту. Широкий ассортимент современных К. позволяет решать самые разнообразные задачи — от создания железобетонных мостов со склеенными конструкциями до производства миниатюрных электронных приборов, от изготовления клеёной одежды и обуви до наложения клеевых швов при операциях на внутренних органах человека, от склеенных игрушек до винтов современных вертолётов и деталей космических кораблей.

  Лит.: Кардашов Д. А., Синтетические клеи, 2 изд., М., 1968: Берлин А. А., Басин В. Е., Основы адгезии полимеров, М., 1969; Хрулев В. М., Синтетические клеи и мастики, М., 1970; Handbook ot adhesives, ed. by 1. Skeist, N. Y. — L., 1962.

А. Б. Давыдов.

Клеильный пресс

Клеи'льный пресс, двухвальный пресс для поверхностной обработки бумаги и картона — проклейки, окраски, облагораживания полимерными или минеральными веществами и др. Применяется при производстве писчих, печатных, технических, мешочных и др. видов бумаг, а также тарных картонов с покровными слоями. К. п. устанавливается, как правило, в сушильной части бумагоделательной машины. В зависимости от расположения валов различают К. п. вертикальные, горизонтальные и наклонные. Обычно один из валов К. п. покрывают твёрдой, а другой — мягкой резиной. Давление между валами К. п. составляет 1—3 Мн/м2 (10—30 кгс/см2). Прижим валов К. п. осуществляется гидравлическим или пневматическим устройством.

Клей пчелиный

Клей пчели'ный, уза, смолистое ароматное вещество, вырабатываемое медоносными пчёлами; то же, что прополис.

Клейдесдальская порода

Клейдесда'льская поро'да лошадей, порода тяжеловозов, выведенная в начале 19 в. в Шотландии, в долине р. Клайд (англ. Clydesdale) путём скрещивания шотландских тяжеловозных кобыл с клевелендскими, фландрскими и шайрскими жеребцами. В Россию К. п. завезли в 19 в. и разводили в Починковском, Деркульском, Хреновском конных заводах и в Гаврилово-Посадской (б. Владимирской) государственной заводской конюшне. Завезённые в Россию клейдесдальские жеребцы имели среднюю высоту в холке 162 см, обхват груди 194 см, обхват пясти 25,5 см, живую массу 900—1100 кг; преобладающие масти — гнедая, караковая. В СССР К. п. использовали для улучшения местных упряжных лошадей Владимирской, Ивановской, Ульяновской и Тамбовской обл. и для выведения отечественной породы лошадей — владимирской тяжеловозной. Клейдесдалей разводят в Великобритании, США, Канаде, Италии, в Южной Америке и Австралии.

Клеймение животных

Клейме'ние живо'тных, см. Мечение сельскохозяйственных животных.

Клеймёнов Иван Терентьевич

Клеймё'нов Иван Терентьевич (13.4.1898—1938), один из организаторов и руководителей работ по ракетной технике в СССР. Член КПСС с 1919. Родился в с. Старая Сурава Усманского уезда, ныне Липецкой области. Окончил Военно-воздушную академию им. Н. Е. Жуковского (1928). В 1932—33 начальник Газодинамической лаборатории, в 1933—37 начальник Реактивного института. Его именем назван кратер на обратной стороне Луны.

Клейн Роман Иванович

Клейн Роман Иванович [19(31).3.1858—3.5.1924, Москва], русский архитектор. Учился в петербургской АХ (1877—82), затем в Париже у Ш. Гарнье (до 1884). Академик петербургской АХ (1907). Преподавал в Рижском политехническом институте, находившемся в эти годы в Москве (1916—18), и в Высшем техническом училище в Москве (1918—23). Сооружения К. отличаются высоким качеством исполнения, но эклектичны по характеру (преимущество модернизованная классика). Главное произведение К. в Москве — здание Музея изобразительных искусств им. А. С. Пушкина (1898—1912), а также Средние торговые ряды на Красной площади (1892), здание универсального магазина «Мюр и Мерилиз» (ныне Центральный универмаг; 1908), Бородинский мост (1912). В 1918—24 К. участвовал в ряде архитектурных конкурсов на проекты рабочих посёлков для Донбасса, Грозного, Туапсе.

Р. И. Клейн. Здание Центрального универмага в Москве. 1908.

Клейн Феликс

Клейн (Kiein) Феликс (25.4.1849, Дюссельдорф,—22.6.1925, Гёттинген), немецкий математик, член-корреспондент Германской АН в Берлине (1913). В 1865 поступил в Боннский университет, учился у Ю. Плюккера; доктор философии Боннского университета (1868). С 1872 профессор математики в Эрлангене, с 1875 в Мюнхенской Высшей технической школе, а с 1880 в Лейпцигском университете. В 1886 К. переехал в Геттинген, где оставался до конца жизни. Основные работы К. по неевклидовой геометрии, теории непрерывных групп, теории алгебраических уравнений, теории эллиптических функций, теории атоморфных функций. Свои геометрические идеи К. изложил в работе «Сравнительное рассмотрение новых геометрических исследований» (1872), известной под название эрлангенской программы. К. стремился раскрыть внутренние связи между отдельными ветвями математики и между математикой, с одной стороны, физикой и техникой — с другой. К. в сотрудничестве с немецким учёным А. Зоммерфельдом написал 4—томное сочинение «Теория волчка» (1910—23). Большой труд был вложен К. в создание «Энциклопедии математических наук» («Enzikiopädie der mathematischen Wissenschaften»). В течение почти 40 лет (с 1876) К. был главным редактором журнала «Mathematische Annalen». Много занимался вопросами математического образования; перед 1-й мировой войной организовал международную комиссию по реорганизации преподавания математики.

  Соч.: Gesammelte mathematische Abhandlungen, Bd 1—3, В., 1921—23; в рус. пер. — Высшая геометрия, М. — Л., 1939; Элементарная математика с точки зрения высшей, т. 1, 3 изд., т. 2, 2 изд., М. — Л., 1934—35; Неевклидова геометрия, М. — Л., 1936; Лекции о развитии математики в 19 столетии ч. 1, М. — Л., 1937.

Клейна - Гордона уравнение

Кле'йна — Го'рдона уравне'ние, квантовое релятивистское (т. е. удовлетворяющее требованиям относительности теории) уравнение для частиц со спином нуль. Исторически К. — Г. у. было первым релятивистским уравнением квантовой механики для волновой функции частицы y; оно было предложено в 1926 Э. Шрёдингером (как релятивистское обобщение Шрёдингера уравнения) и независимо от него шведским физиком О. Клейном (О. Klein), советским физиком В. А. Фоком, немецким физиком В. Гордоном (W. Gordon) и др.

  Для свободной частицы К. — Г. у. записывается в виде:

.

  Ему соответствует релятивистское соотношение между энергией E и импульсом р частицы:  (m — масса частицы, с — скорость света).

  Решением уравнения является функция y (х, у, z, t), зависящая только от координат (х, у, z) и времени (t). Следовательно, частицы, описываемые этой функцией, не обладают никакими дополнительными внутренними степенями свободы, т. е. действительно являются бесспиновыми (к таким частицам относятся, например, p- и К-мезоны). Однако анализ уравнения показал, что его решение y принципиально отличается по своему физическому смыслу от обычной волновой функции как амплитуды вероятности обнаружить частицу в заданном месте пространства в заданный момент времени: y (х, у, z, t) не определяется однозначно значением y в начальный момент времени (такая однозначная зависимость постулируется в квантовой механике), и, более того, выражение для вероятности данного состояния наряду с положительными значениями может принимать также и лишенные физического смысла отрицательные значения. Поэтому сначала от К. — Г. у. отказались. Однако в 1934 В. Паули и В. Вайскопф нашли правильную интерпретацию этого уравнения в рамках квантовой теории поля (они рассмотрели его как уравнение поля, аналогичное Максвелла уравнениям для электромагнитного поля, и проквантовали его; при этом y стало оператором).

1 ... 32 33 34 35 36 37 38 39 40 ... 78
Перейти на страницу:
Тут вы можете бесплатно читать книгу Большая Советская Энциклопедия (КЛ) - БСЭ БСЭ.
Комментарии