Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Радиотехника » Шаг за шагом. От детекторного приемника до супергетеродина - Рудольф Сворень

Шаг за шагом. От детекторного приемника до супергетеродина - Рудольф Сворень

Читать онлайн Шаг за шагом. От детекторного приемника до супергетеродина - Рудольф Сворень

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 68
Перейти на страницу:

Рис. 90. На анодной нагрузке теряется часть постоянного анодного напряжения, и поэтому при чрезмерно большом сопротивлении нагрузки напряжение на аноде лампы становится настолько низким, что усиление каскада уменьшается.

Сказанное можно пояснить и иначе. Лампа и нагрузка образуют своеобразный делитель напряжения, подключенный к анодному выпрямителю. Чем больше сопротивление верхней части делителя, то есть сопротивления , тем меньшая часть напряжения остается на участке анод — катод.

Максимально допустимая величина  определяется также переменным напряжением, которое действует между анодом и катодом лампы. В некоторые моменты времени полярность переменного напряжения на аноде такова, что оно действует против постоянного напряжения и общее напряжение на аноде очень мало (лист 130). В эти моменты анод плохо «притягивает» электроны, анодный ток резко уменьшается и перестает «подчиняться» управляющему напряжению на сетке. В результате этого форма кривой анодного тока становится не похожей на форму кривой управляющего напряжения, то есть появляются нелинейные искажения.

Для того чтобы не было всех этих неприятных явлений, минимальное напряжение, которое остается на аноде, даже в самом неблагоприятном случае должно составлять не меньше чем 10–30 % постоянного анодного напряжения. Поэтому сопротивление нагрузки нужно выбирать с таким расчетом, чтобы амплитуда переменного напряжения на нагрузке не превышала бы 70–90 % постоянного анодного напряжения.

Для каждого типа лампы имеется некоторая оптимальная (наивыгоднейшая) величина сопротивления анодной нагрузки, которая указывается в числе параметров лампы или определяется расчетным путем. Ориентировочно можно считать, что для триодов оптимальное сопротивление нагрузки должно быть в два-три раза больше, а для пентодов в два — десять раз меньше внутреннего сопротивления лампы Ri (лист 133).

Подбирая анодную нагрузку опытным путем, следует начинать с небольших сопротивлений и увеличивать  до тех пор, пока не прекратится рост выходного напряжения или пока не появятся искажения.

Иногда в качестве анодной нагрузки применяют дроссели (лист 131). В этом случае переменное напряжение Uн~ на нагрузке определяется в основном индуктивным сопротивлением xL дросселя. Сопротивление это легко сделать большим, применяя, например, стальной сердечник. В то же время дроссель обладает сравнительно небольшим сопротивлением для постоянного тока, и падение постоянного напряжения на нем невелико. Поэтому в усилительном каскаде с дросселем в качестве нагрузки почти все напряжение выпрямителя действует на аноде лампы.

Этим же свойством отличается и усилительный каскад, в анодную цепь которого включен трансформатор или колебательный контур. Несмотря на указанное достоинство, дроссель редко применяется в качестве нагрузки в усилителе НЧ, так как он вносит сильные частотные искажения: сопротивление нагрузки xL, а следовательно, усиление каскада резко меняется с частотой.

В усилителях ВЧ анодной нагрузкой обычно служит колебательный контур, настроенный в резонанс с частотой усиливаемого сигнала (лист 131).

Важным элементом любого усилительного каскада является сопротивление утечки Rc, включенное в сеточную цепь лампы.

Необходимость включения этого сопротивления объясняется тем, что часть вылетевших из катода электронов всегда попадает на управляющую сетку. Накапливаясь на сетке, электроны создают на ней большой отрицательный заряд, который может препятствовать движению электронов от катода к аноду, так как на сетке появляется «минус» и лампа оказывается запертой (рис. 91).

Рис. 91. На сетку лампы всегда попадает некоторое количество электронов. Накапливаясь, они могут создать значительный отрицательный заряд, который «запрёт» лампу (анодный ток прекратится).

Для борьбы с этим явлением между сеткой и катодом и включают сопротивление Rc, по которому электроны, попадающие на сетку, возвращаются обратно на катод (рис. 92).

Рис. 92. Управляющую сетку соединяют с катодом через какое-либо сопротивление («утечка»), по которому попавшие на сетку электроны возвращаются обратно на катод.

Величину сопротивления Rc выбирают довольно большую — от нескольких сот килоом до нескольких мегом. При меньших значениях Rc это сопротивление будет заметно шунтировать источник усиливаемого сигнала (цепь детектора, колебательный контур и т. п.). При больших значениях Rc переход электронов с сетки на катод затруднится. В тех случаях, когда между сеткой и катодом включен какой-нибудь элемент цепи, пропускающий постоянный ток (угольный микрофон, обмотка трансформатора, контурная катушка и т. п.), необходимость в сопротивлении Rc отпадает (лист 134).

Рассматривая работу усилительного каскада, обратимся к так называемой динамической характеристике лампы. Динамическая характеристика отличается от рассмотренной нами раньше (рис. 65) тем, что в ней учитывается изменение напряжения на аноде лампы при подаче сигнала на ее сетку. Совмещая график изменения напряжения на сетке с динамической характеристикой, можно легко получить график, показывающий, как изменяется анодный ток с течением времени. Пример построения такого графика показан на рис. 93.

Рис. 93. Для иллюстрации работы усилительного каскада обычно совмещают два графика: характеристику лампы и график изменения напряжения на сетке. В результате можно получить третий график, показывающий, как изменяется анодный ток.

Для каждого значения напряжения на сетке по динамической характеристике находим соответствующее значение тока и наносим его на график, показывающий зависимость от времени t. Так, например, в момент «5 сек» Uc = — 1,5 в. Как видно из динамической характеристики, при Uc = — 1,5 в, анодный ток = 3 ма. Отсюда следует, что на график тока для момента «5 сек» можно нанести значение Iа = 3 ма. Проделав подобную операцию для всех значений , мы получим график изменения тока I а. Построение графиков, как это уже много раз было и раньше, помогает нам сравнительно легко описывать сложные процессы, происходящие в усилительном каскаде.

Для упрощения рисунка при построении графика анодного тока была допущена одна неточность: мы не учли, что при положительных напряжениях на сетке появляется сеточный ток и поэтому несколько уменьшается число электронов, идущих к аноду. В результате появления сеточного тока изменяется форма анодного тока (в некоторые моменты анодный ток оказывается меньше, чем должен быть), то есть появляются нелинейные искажения (рис. 94).

Рис. 94. В те моменты, когда на сетке действует положительное напряжение, появляется сеточный ток, а из-за этого искажается форма анодного тока, то есть возникают нелинейные искажения.

Чтобы не было искажений, связанных с появлением сеточного тока, на сетке не должно быть положительного напряжения. Добиться этого можно сравнительно просто: подав на сетку (относительно катода!) вместе с усиливаемым сигналом постоянное отрицательное напряжение — отрицательное смещение (рис. 95, 96).

Рис. 95. Чтобы на сетке не появлялся «плюс», на нее вместе с переменным напряжением подают смещение — постоянное отрицательное напряжение. При слишком большом смещении искажения могут появиться из-за того, что лампа моментами окажется запертой.

Рис. 96. Чтобы избавиться от искажений, нужно прежде всего так подобрать начальное смещение («рабочую точку»), чтобы напряжение на сетке не становилось положительным и в то же время чтобы лампа не запиралась.

В этом случае напряжение на сетке будет меняться так же, как и раньше, в такт с сигналом, однако оно всегда будет оставаться отрицательным.

Величину отрицательного смещения нужно подбирать тщательно. При очень большом смещении лампа в некоторые моменты может оказаться запертой (это явление называется отсечкой), что, конечно, вызовет искажение формы анодного тока (рис. 95). Отрицательное смещение нужно выбирать с таким расчетом, чтобы ток покоя Iпок соответствовал середине прямолинейного участка ламповой характеристики. Этот участок с одной стороны ограничен положительным напряжением на сетке, а с другой стороны — нижним загибом характеристики (рис. 96, лист 135).

1 ... 35 36 37 38 39 40 41 42 43 ... 68
Перейти на страницу:
Тут вы можете бесплатно читать книгу Шаг за шагом. От детекторного приемника до супергетеродина - Рудольф Сворень.
Комментарии