Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas

До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas

Читать онлайн До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 22
Перейти на страницу:

Сегодня теорему Пифагора можно было бы сформулировать следующим образом:

В треугольнике со сторонами а, b и c, угол А = 90º <=> а2 = b2 + с2.

У Евклида же она записана в двух частях (книга 1, предложения 47 и 48):

В прямоугольных треугольниках квадрат на стороне, стягивающей прямой угол, равен вместе взятым квадратам на сторонах, заключающих прямой угол. Если в треугольнике квадрат на одной стороне равен вместе взятым квадратам на остальных двух сторонах, то заключенный между остальными двумя сторонами треугольника угол есть прямой. ("Начала")

Этот случай демонстрирует прогресс, достигнутый благодаря использованию знаков. Среди символов, созданных Эйлером или ставших благодаря ему популярными и использующихся и по сей день, особенно выделяются следующие.

Один из самых известных портретов Эйлера" написанный Якобом Эмануэлем Хандманом в 1753 году, когда ученый жил в Берлине. На картине уже заметна болезнь глаз, от которой Эйлер страдал с 1735 года. Ученый ослеп сначала на один глаз, а затем на другой, но никогда не прекращал интенсивных занятий математикой.

π: ни один из знаков, введенных Эйлером, не имел такого успеха, как π — символ соотношения между длиной окружности и ее диаметром, иррациональное и трансцендентное число, приблизительно равное π = 3,1415926535... Впервые эта греческая буква была использована англичанином Уильямом Джонсом (1675- 1749), который выбрал ее потому, что с нее начиналось слово "периферия", но именно Эйлер сделал ее знаменитой, опубликовав в 1748 году свою книгу "Введение в анализ бесконечно малых".

— Постоянная е: Эйлер впервые обозначил символом "е" основание натуральных логарифмов еще в письме Гольдбаху 1731 года, говоря о пределе

limn→∞(1 + 1/n)n

и о сумме бесконечного ряда:

e = 1 + 1/1 + 1/(1·2) + 1/(1·2·3) + 1/(1·2·3·4 + ...)

Тем не менее только в уже упомянутом "Введении..." Эйлер углубил и развил свои идеи относительно е и даже вычислил первые 26 цифр:

е = 2,71828182845904523536028747...

Почему Эйлер выбрал именно букву е, неизвестно. Существует мнение, что выбор пал на нее, поскольку это первая буква его собственного имени или слова "экспонента", но это всего лишь догадка.

— i: на протяжении большей части своей жизни Эйлер, не обладая строгим и правильным определением предела, записывал как

ex = (1 + x/i)i,

то, что сегодня мы бы записали как

ex = limn→∞(1 + x/n)n.

В этом примере буква i символизирует бесконечное число. Но в 1777 году ученый передумал и стал использовать ее для обозначения мнимой единицы (комплексного числа). Статья 1777 года была опубликована только в 1794 году, но Гаусс, а с ним и все математическое сообщество, сразу же начали использовать i. Эта буква была выбрана как первая в немецком слове "мнимый".

у = ƒ(x): Эйлер стал первым ученым, использовавшим современное понятие функции, связав заданное значение х с получившимся значением у посредством соотношения, названного ƒ. Область определения и значений ƒ были четко обозначены. Функция появляется уже в 1734-1735 годах в Commentarii academiae scientiarum imperialis Petropolitanae — первом журнале Петербургской академии наук. И хотя современное понятие функции немного отличается от того, которое имел в виду Эйлер, нельзя не признать, что он сделал огромный шаг вперед в том, что касается ясности определений и описания.

Σ (сигма): Эйлер выбрал эту букву для обозначения суммы последовательности чисел, подчиняющейся какому-либо правилу, которое записывается над или под символом. В общем случае сумма элементов х, где i — "счетчик" слагаемых, идущих от m до n, записывается так:

Σi=mnxi = xm + xm+1 + xm+2 + ... + xn-1 + xn.

Сигма — греческий аналог буквы "с", с которой начинается слово "сумма", поэтому ее использование кажется вполне логичным. В течение жизни Эйлер вычислил сотни таких последовательностей, многие из которых были бесконечными. При n = ∞ последовательность называется рядом. Возможно, самая знаменитая в своей простоте последовательность Эйлера — это последовательность из Базельской задачи, которую он вычислил в 1735 году, на пике своего математического творчества (мы поговорим о ней подробней в следующей главе):

Σn=1∞1/n2  = π2/6.

Никто не ожидал, что в сумме этой последовательности будет задействовано число π, и его появление внесло настоящую неразбериху в умы ученых.

— Заглавные и строчные буквы: в любом треугольнике стороны обозначаются строчными буквами, а соответствующие углы — теми же буквами, но заглавными (рисунок 1).

РИС. 1

РИС . 2

РИС 3

Аналогичным образом буквами R и г обозначаются соответственно радиусы описанной (рисунок 2) и вписанной окружностей (рисунок 3).

— Использование первых букв алфавита (обычно строчных) — а, b, с, d — для обозначения известных величин в уравнениях, и последних — х, у, z, v — для неизвестных величин.

— Сокращенные латинские формы sin, cos, tang, cot, sec и cosec Эйлер впервые использовал в 1748 году в своей книге "Введение в анализ бесконечно малых" для обозначения тригонометрических функций. Затем они были адаптированы к разным языкам, хотя сейчас фактически универсальным является их английский вариант: sin х, cos х, tan х (в русской традиции tg x), cot х (или ctg х), sec х и cosec х.

— Обозначение для конечных разностей: это вычислительный инструмент, немного похожий на производные. Он не использует понятие предела и так называемые бесконечно малые. Конечные разности встречаются уже у Ньютона (1642-1727), Джеймса Грегори (1638-1675) и Колина Маклорена (1698-1746) и позволяют вычислять неизвестные многочлены на основе их значений, а также интерполировать и изучать последовательности и ряды. Изобретение компьютеров сделало их еще полезнее. Эйлер посвятил много сил изучению конечных разностей. Их обозначения, которые сегодня встречаются в книгах, принадлежат ему. В самом простом случае для последовательности {ui} разность двух соседних членов будет обозначаться ∆:

∆uk = uk+1 - uk.

Последующие конечные разности (второго порядка ∆2, третьего порядка ∆3, четвертого порядка ∆4 и так далее) определяются, исходя из разностей первого порядка с помощью рекурсии, то есть каждая использует предыдущую:

∆puk = ∆(∆p-1uk).

Таким образом строго определяются конечные разности любого порядка — ∆, ∆2, ∆3,... — и с ними можно работать.

ПЕРВОЕ ФУНДАМЕНТАЛЬНОЕ ОТКРЫТИЕ: КОМПЛЕКСНЫЕ ЧИСЛА И ОТРИЦАТЕЛЬНЫЕ ЛОГАРИФМЫ

В серии работ, начатых еще в Базеле, Эйлер открыл формулу комплексных чисел, впоследствии ставшую знаменитой. Он использовал ее для нахождения значения математической категории, до той поры неизвестной, — отрицательных логарифмов. Как мы уже сказали, для обозначения мнимой единицы, √-1, Эйлер использовал символ i.

С этого момента подразумевается, что если в арифметической формуле есть i, то

i= √-1.

Во время работы в Базеле Эйлер открыл формулу

exi = cos x + isin x

и преобразовал ее так, как только он, великий жонглер символами, был способен. Из этого простого выражения, известного как формула Эйлера, которое связывает комплексные числа с тригонометрией, в последующие столетия произошла, как мы увидим в главе 3, большая часть математического анализа.

Во времена Эйлера пользовались большой популярностью логарифмы — инструмент вычисления, открытый в XVI веке. Однако их потенциал оставался невостребованным вплоть

до появления работ швейцарского ученого. Представим их определение: если а положительное число, называемое основанием, N также положительное число и верно равенство

N = αx,

то говорится, что х — логарифм N и пишется х = log2N. Или:

N = αlogN.

Если основание логарифма — число е, то пишется In N вместо log N.

Господа: это абсолютно верно и совершенно парадоксально, мы не можем понять этого и не знаем, что это означает, но мы это доказали и, следовательно, знаем: это правда.

Бенджамин Пирс (1809-1880), профессор Гарварда о так называемой

ФОРМУЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ ЭЙЛЕРА

Число -1 можно записать как -1 =1 + 0i и, следовательно, рассматривать его в качестве комплексного числа. Подставим его в формулу Эйлера:

-1 = 1 + 0i = cosπ + isinπ = exi.

Теперь рассмотрим только начало и конец этого равенства и используем натуральный логарифм:

In(-1) = In(exi) = πi.

Таким образом, Эйлер получил точное значение натурального логарифма от -1, отрицательного числа. На этом ученый приостановил интеллектуальную атаку на данную область и уехал в Санкт-Петербург. Только в 1751 году, почти 25 лет спустя, Эйлер обнародовал этот результат в надлежащем виде вместе со многими другими в фундаментальном труде "Введение в анализ бесконечно малых".

1 2 3 4 5 6 7 8 9 10 ... 22
Перейти на страницу:
Тут вы можете бесплатно читать книгу До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas.
Комментарии