Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Медицина » Респираторная поддержка при анестезии, реанимации и интенсивной терапии - Анатолий Левшанков

Респираторная поддержка при анестезии, реанимации и интенсивной терапии - Анатолий Левшанков

Читать онлайн Респираторная поддержка при анестезии, реанимации и интенсивной терапии - Анатолий Левшанков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 13
Перейти на страницу:

В верхних отделах легких вентиляция преобладает над кровотоком, а в нижних – наоборот. Поэтому VA /Qc в легких сверху вниз уменьшается, соответственно увеличивается шунтирование. Избыточно вентилируемые альвеолы (эффект мертвого пространства) с высоким РО2в капиллярной крови не способны компенсировать газообмен при наличии большого числа слабо или невентилируемых альвеол с низким РО2 в капиллярах. Наиболее часто нарушается VA /Qc при длительном нахождении больного на боку, особенно в условиях искусственной вентиляции лeгких (ИВЛ).

Биомеханика дыхания. Эффективность альвеолярной вентиляции зависит от активности дыхательных мышц и величины сопротивления дыханию.

Вдох осуществляется в результате сокращения диафрагмы и наружныхмежреберныхмышц, априфизическойнагрузке – еще и дополнительных дыхательных мышц (лестничных, грудиноключично-сосцевидных). Диафрагма смещается при спокойном дыхании примерно на 1 см, а при форсированном – до 10 см. Выдох происходит пассивно вследствие спадения легких и грудной клетки. При физической нагрузке участвуют и экспираторные дыхательные мышцы (передней брюшной стенки и внутренние межреберные). В результате сокращения дыхательных мышц преодолевается сопротивление дыханию: эластическое и неэластическое. Кривые зависимости объема от давления для раздувания и спадения легких неодинаковы. Их можно представить в виде петли (гистерезиса)давление – объем.Этикривыеотражаютсявовремя ИВЛ на дисплее многих современных аппаратов ИВЛ.

Связь между работой дыхательных мышц и вентиляцией отражают показатели биомеханики дыхания:

С – податливость (растяжимость) легких и грудной клетки (Compliance) – это обратная величина эластического сопротивления, котораяхарактеризуетсякрутизнойкривойдавление – объем, т. е. изменением объема на единицу измененного давления. Чем больше эластическое сопротивление, тем меньше податливость.УздоровыхлюдейС= 0,1л/смвод.ст.Определитьвеличину С динамической – CDIN и статической (трансторокального давления в точке нулевого потока) – CST можно по формулам:

где Р – пиковое давление на вдохе;

где Р – давление плато на вдохе.

R – резистентность(сопротивление)дыхательныхпутей — это отношение градиента давления (Р) к скорости воздушного потока (V): R, см вод. ст./(л ⋅с– 1) = Р, см вод. ст./ V, л/с. У здоровых взрослых людей R = 1,3 – 3,6 см вод. ст./л ⋅с– 1), у детей – 5,5 см вод. ст./(л ⋅с– 1). При носовом дыхании оно на 55 % выше, чем при дыханиичерезрот, навыдохе – на20%посравнениюсвдохом.Резистентность дыхательных путей обусловлена в основном аэродинамическим сопротивлением, которое при ламинарном потоке:

• прямо пропорционально объемной скорости потока (при турбулентном потоке – объемной скорости потока в квадрате);

• длине дыхательных путей;

• вязкости газа (при турбулентном потоке – плотности газа);

• и обратно пропорционально радиусу в четвертой степени (при турбулентном потоке – в пятой степени).

Уменьшать податливость легких и грудной клетки могут следующие факторы:

1) повышение давления в легочных венах, переполнение легких кровью;

2) альвеолярный отек;

3) длительное отсутствие вентиляции;

4) уменьшение сурфактанта в легких (воздействие наркотиков и ИВЛ, респираторный дистресс-синдром взрослых и пр.);

5) ограничение подвижности грудной клетки (нефизиологическое положение на операционном столе, пневмоторакс);

6) парез кишечника.

При снижении податливости вентиляция может стать неравномерной, потребуется большее усилие (работа) дыхательных мышц, а при ИВЛ – большее давление. В случаях недостаточности функции дыхательных мышц может наступить гиповентиляция, а при ИВЛ – нарушение гемодинамики, разрыв легочной ткани.Поэтомуоченьважномедсестреосуществлятьмониторинг за податливостью во время анестезии и интенсивной терапии и регистрировать этот показатель в карте наблюдения.

Резистентность дыхательных путей зависит в основном от диаметра дыхательных путей. Уменьшение его в 2 раза увеличивает сопротивление в 16 – 32 раза. Поэтому очень важно интубацию осуществлять трубкой соответствующего диаметра. Сопротивление дыхательных путей резко возрастает:

1) при нарушении их проходимости, в частности естественной очистки трахеобронхиального дерева (угнетение кашлевого механизма, ухудшение функции мукоцилиарного аппарата анестетиками, холодной и сухой кислородно-воздушной смесью, ухудшение реологических свойств мокроты);

2) при обтурации дыхательных путей инородными материалами (желудочным содержимым, слизью и пр.);

3) вследствие бронхоспазма (например, при бронхиальной астме).

Для преодоления эластического и неэластического сопротивления дыхательная мускулатура совершает работу, которая в покое при минутном объeме дыхания (МОД) до 10 л составляет 0,01 – 0,04 кгм/л (0,1 – 0,4 кгм/мин). При умеренной одышке работа дыхательных мышц увеличивается до 0,5 кгм/мин, а при выраженной одышке – 1,4 – 1,6 кгм/мин. При увеличении работы более чем на 0,05 кгм/л наступает несоответствие между потребностью организма в кислороде и его доставкой. Затраты кислороданаработудыхательныхмышцсоставляютлишь5%общегопотребления кислорода, а при произвольной гипервентиляции увеличиваются до 30 %. Поэтому у больных может оказаться такое состояние, когда прирост общего потребления кислорода организмом за счет работы дыхательных мышц может оказаться меньшим, чем необходимый объем его для дыхательных мышц.

Активность дыхательных мышц может быть снижена вследствие поражения центральной нервной системы (ЦНС), остаточного действия анестетиков и миорелаксантов, непосредственного поражения самих мышц или периферических нервов (полиомиелиты, миастения, ботулизм, интоксикации и пр.).

Транспорт газов кровью. Перенос О2 из легочных капилляров в капилляры тканей и СО2 – в обратном направлении зависит в основном от работы «насоса» сердечно-сосудистой системы (минутного объема кровообращения) и дыхательной функции крови (количества циркулирующего гемоглобина и кривой диссоциации оксигемоглобина).

Чаще всего нарушается газообмен кислорода, транспорт которого осуществляется в двух формах: связанном с гемоглобином и в растворенном в плазме. Кислород переносится кровью в основном в связанном с гемоглобином крови (97 %) и небольшая доля (3 %) – растворенном в плазме состоянии.

Количество растворенного в плазме кислорода прямо пропорционально его парциальному давлению и коэффициенту растворимости. В артериальной крови в растворенном состоянии кислорода переносится всего лишь 14 мл: РаО2 × коэф. растворимости =95⋅0,00003 ⋅5000 = 14 мл. Коэффициент растворимости зависит от температуры: приТ=20 °C – 0,0031 мл/100 мл и Т = 38 °C – 0,0023 мл/100 мл. При гипербарической оксигенации (ГБО) в связи со значительным увеличением парциального давления О2количество растворенного кислорода в плазме резко повышается. Каждый грамм гемоглобина при полном насыщении переносит 1,31 – 1,39 мл кислорода.

Максимальное количество кислорода, соединенное с гемоглобином, называют кислородной емкостью, которая равна примерно 21 об.% (21 мл О2 в 100 мл крови).

Количество транспортируемого кислорода (ТкО2) в связанном с гемоглобином состоянии можно определить по следующей формуле:

В норме SaO2=97%иSvO2= 72 %, (a-v)SO2 = 25 %. Человек в покое потребляет около 250 мл О2 в минуту (1000 – 750), т. е. около 25 % кислорода артериальной крови. При повышении метаболизма (например, при неадекватной анестезии) количество потребляемого кислорода возрастает.

Связь кислорода с гемоглобином артериальной крови в легких и отдача его тканям изображается в виде кривой диссоциации оксигемоглобина (КДО). Положение КДО можно определить по величине Р50 – уровень РО2, при котором SO2 составит 50 %. В норме Р50 равен 26,7 мм рт. ст. Если эта величина меньше 27, КДО сдвигается влево, т. е. гемоглобин имеет большое сродство к кислороду и больше им насыщен. Причина сдвига КДО влево: алкалоз, гипотермия, гипокапния, уменьшение содержания 2 – 3 дифосфоглицерата (ДФГ). При значении Р50 более 27 мм рт. ст. КДО смещается вправо и гемоглобин имеет более низкое сродство к кислороду и отдача его тканям может быть при более низкой перфузии. Причины сдвига КДО вправо: ацидоз метаболический, гиперкапния, гипертермия, увеличение 2 – 3 – ДФГ.

Различают следующие нарушения транспорта газов кровью: гемодинамические (снижение сердечного индекса) и гемические (уменьшение количества циркулирующего гемоглобина, ухудшение связывания кислорода с гемоглобином в легких или отдачи его тканям). Дыхательная функция крови нарушается при отравлении окисью углерода (угарным газом), когда образуется прочная связь СО с гемоглобином – карбооксигемоглобин (сродство СО с гемоглобином в 240 раз выше, чем у О2).

1 2 3 4 5 6 7 8 9 10 ... 13
Перейти на страницу:
Тут вы можете бесплатно читать книгу Респираторная поддержка при анестезии, реанимации и интенсивной терапии - Анатолий Левшанков.
Комментарии