Аргонавты Вселенной - Владимир Владко
Шрифт:
Интервал:
Закладка:
– Для чего мы покидаем нашу Землю, зачем посылает нас Родина в бескрайные просторы космоса? Перед нашей экспедицией поставлено много важных и ответственных научных задач. Нет надобности, да и возможности перечислять их все перед вами. Уже сам по себе вылет в космос пассажирского межпланетного корабля является огромным научным событием.
Наш астроплан представляет собой целую лабораторию, снабженную множеством приборов для научных исследований в мировом пространстве. Что же мы будем исследовать, изучать? – спросите вы. Я отвечу вам: все, начиная от астрономических явлений и кончая сложными физическими проблемами, среди которых едва ли не главной является проверка в условиях Вселенной существующих данных о природе и происхождении космических лучей. Это – в межпланетном пространстве. А на самой Венере? Конечно, в первую очередь – природу и, как мы надеемся, интереснейшую жизнь на этой все еще загадочной для нас планете, которая вечно прячет свое лицо под покровом густой облачной завесы. Как видите, научных задач у нас очень много. Но среди них есть одна, имеющая, кроме всего прочего, и важнейший практический характер. Решение ее поможет нам покончить с безжалостным врагом всех металлов Земли – коррозией. Как вы знаете, коррозией называется разрушение металла под различными физико-химическими влияниями. Ржавчина на железе, зеленая окись на меди, матовый налет на алюминии – все это коррозия. Это – неуловимый вор, который крадет у нас колоссальное количество металла. Человечество ежегодно теряет от коррозии около 30 миллионов тонн различных металлов. Мы, конечно, боремся с коррозией, изобретаем различные стрйкие сплавы металлов. Но всего этого слишком мало. Вездесущий вор продолжает красть миллионы тонн металла из нашего хозяйства, он подстерегает нас всюду. И мы хотим окончательно и навсегда победить его. Как?
Академик Рындин взглянул на притихший зал.
– Вспомним известную периодическую таблицу элементов великого русского химика Дмитрия Ивановича Менделеева. И, вспомнив ее, вы сразу заметите, что она заканчивается в ее теперешнем виде на элементе номер сто один – так называемом менделеевии. Напомню вам, что еще совсем недавно, в середине нашего столетия, таблица Менделеева была значительно короче, она заканчивалась на элементе номер девяносто два – на уране. Да, да, именно уран был последним элементом в таблице, который ученые до того времени смогли открыть и найти в коре нашей Земли в виде химических соединений с другими элементами. Но после этого наука продвинулась вперед большими и победоносными шагами. С тех пор ученые создали новые химические элементы, неизвестные до того времени человечеству: нептуний, плутоний, америций, кюрий, берклий, калифорний, афиний, центурий и, наконец, менделеевии, занявшие соответственно с девяносто третьего по сто первое место в таблице Менделеева. Все это – искусственно созданные человеком элементы, так называемые трансурановые. Очень важно отметить, что эти открытия опровергли одно распространенное ошибочное мнение, долгое время господствовавшее в науке. Многие ученые считали раньше, что расширение таблицы Менделеева за пределы урана вообще невозможно, так как, мол, элементы тяжелее урана не могут практически существовать из-за своей неустойчивости. Развитие науки опрокинуло такие утверждения. Оно заставило скептиков вспомнить и по достоинству оценить пророческое предвидение самого Менделеева, который указывал, что он допускает возможность расширения его периодической таблицы.
Конечно, среди трансурановых элементов, созданных человеком, оказались и весьма нестойкие, как, например, нептуний, период полураспада которого составляет всего 2-3 дня. Кстати, напомню вам, что периодом полураспада называется время, в течение которого распадается половина атомов данного элемента. Нептуний, как видим, очень нестоек. Но ведь естественный элемент радон, занимающий в таблице Менделеева восемьдесят шестое место и существующий в природе независимо от человека, не намного устойчивее нептуния: его период полураспада не достигает четырех дней. А вот искусственно созданный учеными элемент плутоний, наоборот, является сравнительно очень стойким. Его период полураспада составляет 24 тысячи лет, тогда как общеизвестный естественный элемент радий обладает периодом полураспада всего в 1590 лет. Таким образом, мы убеждаемся, что некоторые трансурановые, искусственно созданные человеком элементы могут быть и очень стойкими – во всяком случае, для практических надобностей человечества. Согласитесь, что 24 тысячи лет для нас с вами – срок более чем достаточный!..
Академик Рындин переждал, пока по залу прокатился легкий смех, вызванный его шуткой, и продолжал:
– Итак, трансурановые элементы искусственно созданы человеком. Означает ли это, что такие элементы никогда не существовали раньше в природе? Конечно, нет. Эти элементы могли существовать тогда, когда наша Земля была значительно моложе, когда они не успели еще разложиться, разрушиться. Запомним это – и перейдем к другим выводам или, если хотите, предположениям. Почему не допустить, что таблицу Менделеева можно расширить еще дальше? Почему не подумать о существовании в искусственном или естественном видене только трансурановых элементов от девяносто третьего до сто первого, но и еще более тяжелых, которые следовало бы условно назвать сверхтяжелыми элементами? Кто возьмет на себя смелость утверждать, что такие сверхтяжелые элементы не существовали когдалибо на нашей Земле или не существуют сегодня где-нибудь в природе бесконечной Вселенной?!.. Этого утверждать не сможет никто. Но почему же тогда они неизвестны науке? Да потому, что подобные сверхтяжелые элементы либо сами постепенно распадаются как нестойкие (это касается радиоактивных элементов), либо, возможно, они существуют в слишком незначительных количествах, да и то в недоступных для нас пока что глубоких сферах земного шара. Взгляните на эту таблицу…
Освещенное сверху прожекторами, над трибуной спустилось большое полотнище, на котором каждый мог узнать знакомые ряды периодической системы элементов Менделеева. Но эта таблица имела несколько необычный вид. Ее ровные ряды не заканчивались менделеевием – элементом номер сто один. Нет, под первым рядом седьмого периода был проставлен еще и второй ряд, клетки которого были заполнены условными номерами. И один из этих номеров сиял ярким красным светом: это был номер сто одиннадцать. Академик Рындин указал на него:
– Смотрите! Мы теоретически продолжили, расширили седьмой ряд таблицы Менделеева. Если он существует, то в нем, как и в предыдущем, должно быть тридцать два элемента. Следовательно, этот период будет заканчиваться элементом номер сто восемнадцать, поскольку начинается он элементом номер восемьдесят семь – францием. Сейчас нас не интересуют все элементы, из которых должен составляться седьмой период.
Но обратим внимание на элемент номер сто одиннадцать, место которого освещено в таблице красным светом. Каким должен быть этот элемент? Посмотрите на начало предыдущего полупериода: там, как раз над клеткой нашего неизвестного еще элемента номер сто одиннадцать, вы увидите элемент номер семьдесят девять – давно знакомое нам золото. Но в гаком случае какие предположения можем мы сделать относительно свойств интересующего нас элемента номер сто одиннадцать? Если мы знаем основные принципы построения таблицы Менделеева, то нам позволительно предположить, что неизвестный элемент номер сто одиннадцать будет иметь свойства, схожие с элементом номер семьдесят девять – с золотом. Причем эти свойства в новом элементе могут быть выражены даже значительно ярче. Мы имеем основания предполагать, что элемент номер сто одиннадцать окажется не менее, а более благородным металлом, чем золото. Он не только сам не будет поддаваться коррозии, но и сможет облагораживать все иные металлы, если его добавлять к ним хотя бы в незначительном количестве. Этот неизвестный еще металл может стать чудесным оружием против коррозии. И мы условно назвали этот необычайный по своим свойствам, пока еще предположительно существующий элемент номером сто одиннадцать – ультразолотом!
По залу пронесся тихий гул. Ультразолото! Таинственный, загадочный, неизвестный до сих пор металл. Он придаст всем другим металлам, как предполагает академик Рындин, свойства золота – устойчивость против коррозии!..
– Но возникает сложный, трудно разрешимый вопрос: где же отыскать этот воображаемый пока металл, это ультразолото? На Земле нам до сих пор не удалось найти даже ничтожных его следов. Если ультразолото и есть на Земле, то оно, очевидно, прячется от нас где-то в глубинах земного шара, в его отдаленнейших недрах. Добыть его оттуда мы пока не можем, даже вооружившись нашей могучей современной техникой.