Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Великая Теорема Ферма - Саймон Сингх

Великая Теорема Ферма - Саймон Сингх

Читать онлайн Великая Теорема Ферма - Саймон Сингх

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 70
Перейти на страницу:

В обычной арифметике мы мыслим сложение как сдвиг по прямой на несколько делений — зазоров между отметками. Например, сказать: 2+4 = 6 — то же самое, что сказать: начните с отметки 2, сдвиньтесь вдоль числовой прямой на 4 деления и вы получите число 6. Но в арифметике вычетов по модулю 5 получаем, что

4 + 2 = 1.

Так происходит потому, что если мы начнем с отметки 4 и сдвинемся по окружности на 2 деления, то вернемся к отметке 1. Новая арифметика может показаться непривычной, но в действительности, мы пользуемся ей ежедневно, когда речь заходит о времени. Четыре часа после 11 (т. е. 11+4) обычно принято называть не 15, а 3 часами. Это — арифметика вычетов по модулю 12.

Помимо сложения в «часовой» арифметике можно производить и все другие обычные математические операции, например, умножение. В арифметике вычетов по модулю 12 имеем: 5·7=11. Такое умножение можно представить себе следующим образом: начав с отметки 0 и сдвинувшись на 5 групп из 7 делений в каждой, вы в конце концов дойдете до отметки 11. Это лишь один из способов мысленно представить себе умножение в этой арифметике; существуют более хитрые приемы, позволяющие ускорить вычисления. Например, чтобы вычислить 5·7, мы можем для начала просто вычислить обычное произведение, которое равно 35. Разделив затем 35 на 12, мы получим остаток, который и дает ответ на интересующий нас вопрос. Число 12 содержится в 35 дважды и плюс остаток 11, поэтому произведение 5·7 в арифметике вычетов по модулю 12 равно 11. Это равносильно тому, что мы мысленно дважды обошли циферблат, и нам осталось пройти еще 11 промежутков.

Так как в арифметике вычетов конечное число элементов, то в ней сравнительно легко найти все возможные решения любого уравнения. Например, не составляет труда перечислить все возможные решения кубического уравнения

x3 — x2 = y2 + y

в арифметике вычетов по модулю 5. Вот они:

x = 0, y = 0,

x = 0, y = 4,

x = 1, y = 0,

x = 1, y = 4.

Хотя некоторые из этих решений не являются решениями в целых числах, в рассматриваемой арифметике вычетов все они — решения. Например, подставим значения (x=1, y=4) в наше уравнение:

x3 — x2 = y2 + y,

13 — 12 = 42 + 4,

1 — 1 = 16 + 4,

0 = 20.

Но число 20 эквивалентно 0, так как число 5 делит число 20 с остатком 0.

Поскольку найти число решений кубического уравнения в целых числах крайне трудно, математики решили сначала определить число решений в различных арифметиках вычетов. Для приведенного выше уравнения число решений в арифметике по модулю 5 равно четырем. Это записывают так: E5 = 4. Можно подсчитать число решений и в других арифметиках. Например, в арифметике вычетов по модулю 7 число решений равно 9, т. е. E7 = 9.

Подводя итог своим вычислениям, математики составили список числа решений в каждой из арифметик вычетов и назвали его L-рядом эллиптической кривой (или соответствующего кубического уравнения). Что, собственно, означает здесь буква L, все давно забыли. Считается, что L означает Густава Лежена Дирихле, который также занимался изучением кубических уравнений. Для ясности я буду использовать обозначение «E-ряд» — ряд, полученный для кубического уравнения. Для приведенного выше уравнения E-ряд выглядит так.

Уравнение: x3 — x2 = y2 + y;

E-ряд: E1 = 1, E2 = 4, E3 = 4, E4 = 8, E5 = 4, E6 = 16, E7 = 9, E8 = 16, …

Пока не известно, сколько решений имеют кубические уравнения в обычном числовом пространстве, которое бесконечно, E-ряды заведомо лучше, чем ничего. В действительности, E-ряд содержит в себе значительную долю информации о том уравнении, которое оно описывает. Подобно тому, как биологическая ДНК несет в себе всю информацию, необходимую для построения живого организма, E-ряд несет в себе наиболее существенную информацию об эллиптической кривой. Математики питали надежду, что E-ряд — это своего рода математическая ДНК, и что при помощи его они в конечном счете смогут вычислить все, что им хотелось бы знать об эллиптической кривой.

Работая под руководством Джона Коутса, Уайлс быстро заслужил репутацию блестящего специалиста по теории чисел, глубоко разбирающегося в арифметике эллиптических кривых. С каждым новым результатом и с каждой опубликованной статьей Уайлс, сам того не ведая, набирался опыта, который несколькими годами позже привел его к возможности доказать Великую теорему Ферма.

В то время еще никому не было известно, что в послевоенной Японии уже произошла цепь событий, которые позволят установить неразрывную связь между эллиптическими кривыми и модулярными формами. Именно эта связь и приведет впоследствии к доказательству Великой теоремой Ферма. Поощряя Уайлса к изучению эллиптических кривых, Коутс дал ему средства, позволившие осуществить давнюю мечту.

Глава 5. Доказательство от противного

Узоры математика, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.

Г. Г. Харди

В январе 1954 года талантливый молодой математик из Токийского университета нанес обычный визит в факультетскую библиотеку. Горо Шимуре был нужен экземпляр журнала «Mathematische Annalen», том 24. В частности, его интересовала статья Дойринга по алгебраической теории комплексного умножения. Шимура надеялся, что теория Дойринга поможет ему выполнить чрезвычайно сложные вычисления, смысл которых был ясен лишь узкому кругу специалистов.

К удивлению и разочарованию Шимуры, нужный ему том журнала был выдан. Его взял Ютака Танияма, с которым Шимура был едва знаком. Танияма жил в другом конце студенческого городка. Шимура отправил Танияме открытку, объясняя, что журнал ему срочно нужен, чтобы закончить сложные вычисления, и вежливо осведомился, когда тот мог бы вернуть журнал.

Через несколько дней на рабочий стол Шимуры легла открытка. Танияма сообщал, что он работает над той же проблемой и столкнулся с той же трудностью, о которой упоминал в своей открытке Шимура. Танияма предложил встретиться для того, чтобы обменяться идеями, и, возможно, в дальнейшем совместно работать над проблемой. Так случайное совпадение заказов на один и тот же журнал в университетской библиотеке стало толчком к сотрудничеству, благодаря которому в математике была найдена одна из фундаментальных закономерностей.

Танияма родился 12 ноября 1927 года в небольшом городке в нескольких километрах к северу от Токио. Японский иероглиф, обозначающий его имя, должен читаться как «Тойо», но большинство чужих людей, не являющихся членами семьи Таниямы, неправильно интерпретировали его как «Ютака», и, когда Танияма вырос, он принял это имя. В детстве образование Таниямы постоянно прерывалось. Он не отличался особенно крепким здоровьем, часто хворал, а став подростком, заболел туберкулезом и пропустил два года в средней школе. Разразившаяся война вызвала еще более продолжительный перерыв в его образовании.

Горо Шимура, бывший на один год младше Таниямы, вынужден был совсем не учиться в военные годы. Его школу закрыли, и вместо уроков Шимура был вынужден работать на заводе, собирая детали самолетов. Каждый вечер он пытался самостоятельно заниматься по школьной программе. Особенно его влекла математика. «Разумеется, приходилось изучать многие предметы, но особенно легко мне давалась математика. Я запоем читал учебники математики. По учебникам я выучил математический анализ. Если бы я захотел изучить химию или физику, то мне потребовалось бы специальное оборудование, а у меня не было доступа ни к чему подобному. Я никогда не думал, будто обладаю какими-то способностями к математике. Просто мне было интересно».

Через несколько лет после окончания войны Шимура и Танияма были уже студентами университета. К тому времени, когда они обменялись открытками по поводу тома «Mathematische Annalen», жизнь в Токио начала возвращаться в обычное русло, и два студента могли позволить себе небольшую роскошь: среди дня немного посидеть в кафе, вечером пообедать в ресторанчике, специализировавшемся на блюдах из китового мяса, а потом погулять в ботаническом саду или городском парке. Все это были идеальные места для обсуждения самых свежих математических идей.

Хотя Шимура был не чужд некоторых причуд (он и поныне питает слабость к анекдотам о мудрецах, проповедующих дзен-буддизм), он был более консервативен и традиционен, чем его коллега. Шимура поднимался на рассвете и сразу же приступал к работе. Танияма же частенько не ложился спать, проработав всю ночь напролет. Те, кто заглядывал днем к нему в номер, нередко заставали его спящим.

1 ... 36 37 38 39 40 41 42 43 44 ... 70
Перейти на страницу:
Тут вы можете бесплатно читать книгу Великая Теорема Ферма - Саймон Сингх.
Комментарии