Категории
Самые читаемые
PochitayKnigi » Документальные книги » Публицистика » 11 сентября 2001 - Тьерри Мейссан

11 сентября 2001 - Тьерри Мейссан

Читать онлайн 11 сентября 2001 - Тьерри Мейссан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 43 44 45 46 47 48 49 50 51 ... 54
Перейти на страницу:

This is impossible, as it is well known that the maximum temperature that can be reached by a non-stoichiometric hydrocarbon burn (that is, hydrocarbons like jet-fuel, burning in air) is 825 degrees Centigrade (1520 degrees Fahrenheit). Even worse, the WTC fires were fuel rich (as evidenced by the thick black smoke) and thus did not reach anywhere near this upper limit of 825 degrees. In fact, the WTC fires would have burnt at, or below, temperatures typical in office fires.

If the temperatures inside large regions of the building were above 700 degrees Centigrade, then these regions would have glowing red hot and there would have been visible signs of this from the outside. Even pictures taken from the air looking horizontally into the impact region show little or no sign of severe burning (above 700 degrees Centigrade).

When temperatures above 700 degrees Centigrade are reached within a region, this results in the breaking of the windows within that region. However, once the blast and fireball effects of the impacts had subsided, there appeared to be no ongoing window breakage from either tower, either as evidenced from pictures or video footage or as reported from the ground. In fact, significant areas of window even remained intact within the impact region. This is further evidence that fully developed fire conditions did not spread much through and beyond the initial devastated region, following the impacts.

In contrast, the First Interstate Bank fire in Los Angeles showed greater heating effects over larger regions than those observed in either tower. The temperature attained by the First Interstate Bank fire was clearly greater than that of either of the twin towers as the fire was hot enough to break the window glass (which rained down on the streets below presenting a considerable hazard to those on the ground).

The First Interstate Bank did not collapse.

A major portion of the uncertainty in these estimates is due to the scarcity of data regarding the initial conditions within the building and how the aircraft impact changed the geometry and fuel loading. Temperatures may have been as high as 900-1,100 degrees Centigrade (1,700-2,000 degrees Fahrenheit) in some areas and 400-800 degrees Centigrade (800-1,500 degrees Fahrenheit) in others.

All this talk of such high temperatures is to convince you that the steel beams and columns must have got really hot, but this is not so. For example, a ceiling gas temperature of 1,800 degrees Fahrenheit, for 5 minutes, would not heat the steel beams and columns significantly and the typical office fire that followed would not heat them to the point of collapse (trusses however, may have been significantly affected (this is the reason why the «truss theory» became popular)). It should be noted that the twin towers were designed to survive much more serious fires than those that occurred on September 11. That is the law.

The viability of a 3-5 trillion Btu/hr (1-1.15 GW) fire depends on the fuel and air supply. The surface area of office contents needed to support such a fire ranges from about 30,000-50,000 square feet, depending on the composition and final arrangement of the contents and the fuel loading present. Given the typical occupied area of a floor as approximately 30,000 square feet, it can be seen that simultaneous fire involvement of an area equal to 1-2 entire floors can produce such a fire. Fuel loads are typically described in terms of the equivalent weight of wood. Fuel loads in office-type occupancies typically range from about 4-12 psf, with the mean slightly less than 8 psf (Culver 1977). File rooms, libraries, and similar concentrations of paper materials have significantly higher concentrations of fuel. At the burning rate necessary to yield these fires, a fuel load of about 5 psf would be required to provide sufficient fuel to maintain the fire at full force for an hour, and twice that quantity to maintain it for 2 hours. The air needed to support combustion would be on the order of 600,000-1,000,000 cubic feet per minute.

Air supply to support the fires was primarily provided by openings in the exterior walls that were created by the aircraft impacts and fireballs, as well as by additional window breakage from the ensuing heat of the fires. Table 2.1 lists the estimated exterior wall openings used in these calculations. Although the table shows the openings on a floor-by-floor basis, several of the openings, particularly in the area of impact, actually spanned several floors (see Figure 2-17).

Sometimes, interior shafts in burning high-rise buildings also deliver significant quantities of air to a fire, through a phenomenon known as «stack effect,» which is created when differences between the ambient exterior air temperatures and the air temperatures inside the building result in differential air pressures, drawing air up through the shafts to the fire area. Because outside and inside temperatures appear to have been virtually the same on September 11, this stack effect was not expected to be strong in this case.

Based on photographic evidence, the fire burned as a distributed collection of large but separate fires with significant temperature variations from space to space, depending on the type and arrangement of combustible material present and the available air for combustion in each particular space. Consequently, the temperature and related incident heat flux to the structural elements varied with both time and location. This information is not currently available, but could be modeled with advanced CFD fire models.

Damage caused by the aircraft impacts is believed to have disrupted the sprinkler and fire standpipe systems, preventing effective operation of either the manual or automatic suppression systems. Even if these systems had not been compromised by the impacts, they would likely have been ineffective. It is believed that the initial flash fires of jet fuel would have opened so many sprinkler heads that the systems would have quickly depressurized and been unable to effectively deliver water to the large area of fire involvement (this is garbage, or a significant design fault). Further, the initial spread of fires was so extensive as to make occupant use of small hose streams ineffective.

Table 2.1 Estimated Openings in Exterior Walls of WTC 1

2.2.1.3 Evacuation

Some occupants of WTC 1 and WTC 2 began to voluntarily evacuate the buildings soon after the first aircraft struck WTC 1. Full evacuation of all occupants below the impact floors in WTC 1 was ordered soon after the second plane hit the south tower (Smith 2002). As indicated by Cauchon (2001a), the overall evacuation of the towers was as much of a success as thought possible, given the overall incident. Cauchon indicates that, between both towers, 99 percent of the people below the floors of impact survived (2001a) and by the time WTC 2 collapsed, the stairways in WTC 1 were observed to be virtually clear of building occupants (Smith 2002). In part this was possible because conditions in the stairways below the impact levels largely remained tenable. However, this may also be a result of physical changes and training programs put into place following the 1993 WTC bombing. Important modifications to building egress made following the 1993 WTC bombing included the placement of photo-luminescent paint on the egress paths to assist in wayfinding (particularly at the stair transfer corridors) and provision of emergency lighting for the stairways. In addition, an evacuation training program was instituted (Masetti 2001).

Shortly before the times of collapse, the stairways were reported as being relatively clear, indicating that occupants who were physically capable and had access to egress routes were able to evacuate from the buildings (Mayblum 2001). People within and above the impact area could not evacuate, simply because the stairways in the impact area had been destroyed.

Some survivors reported that, at about the same time that WTC 2 collapsed, lighting in the stairways of WTC 1 was lost (Mayblum 2001). Also, there were several accounts of water flowing down the stairways and of stairwells becoming slippery beginning at the 10th floor (Labriola 2001).

Anecdotes indicate altruistic behavior was commonly displayed. Some mobility-impaired occupants were carried down many flights of stairs by other occupants. There were also reports of people frequently stepping aside and temporarily stopping their evacuation to let burned and badly injured occupants pass by (Dateline NBC 2001, Hearst 2001). Occupants evacuating from the 91st floor noted that, as they descended to lower levels of the building, traffic was considerably impaired and formed into a slowly moving single-file progression, as evacuees worked their way around firefighters and other emergency responders, who were working their way up the stairways or who were resting from the exertion of the climb (Shark and McIntyre 2001).

2.2.1.4 Structural Response to Fire Loading

As previously indicated, the impact of the aircraft into WTC 1 substantially degraded the strength of the structure to withstand additional loading and also made the building more susceptible to fire-induced failure. Among the most significant factors:

• The force of the impact and the resulting debris field and fireballs probably compromised spray applied fire protection of some steel members in the immediate area of impact. The exact extent of this damage will probably never be known, but this likely resulted in greater susceptibility of the structure to fire-related failure.

• Some of the columns were under elevated states of stress following the impact, due to the transfer of load from the destroyed and damaged elements.

• Some portions of floor framing directly beneath the partially collapsed areas were carrying substantial additional weight from the resulting debris and, in some cases, were likely carrying greater loads than they were designed to resist (this is probably not true). As fire spread and raised the temperature of structural members, the structure was further stressed and weakened, until it eventually was unable to support its immense weight. Although the specific chain of events that led to the eventual collapse will probably never be identified (so they hope) the following effects of fire on structures may each have contributed to the collapse in some way. Appendix A presents a more detailed discussion of the structural effects of fire.

• As floor framing and supported slabs above and in a fire area are heated, they expand. The people who designed the towers were not fools and knew all this. They designed the towers to survive much more serious fires than those that occurred on September 11. As a structure expands, it can develop additional, potentially large, stresses in some elements. If the resulting stress state exceeds the capacity of some members or their connections, this can initiate a series of failures (Figure 2-20).

• As the temperature of floor slabs and support framing increases, these elements can lose rigidity and sag into catenary action. As catenary action progresses, horizontal framing elements and floor slabs become tensile elements, which can cause failure of end connections (Figure 2-21) and allow supported floors to collapse onto the floors below. The presence of large amounts of debris on some floors of WTC 1 would have made them even more susceptible to this behavior. In addition to overloading the floors below, and potentially resulting in a pancake-type collapse of successive floors, local floor collapse would also immediately increase the laterally unsupported length of columns, permitting buckling to begin. As indicated in Appendix B, the propensity of exterior columns to buckle would have been governed by the relatively weak bolted column splices between the vertically stacked prefabricated exterior wall units. This effect would be even more likely to occur in a fire that involves several adjacent floor levels simultaneously, because the columns could effectively lose lateral support over several stories (Figure 2-22).

• As the temperature of column steel increases, the yield strength and modulus of elasticity degrade and the critical buckling strength of the columns will decrease, potentially initiating buckling, even if lateral support is maintained. This effect is most likely to have been significant in the failure of the interior core columns.

To believe the silly little tale you are being told here, you must believe that the designers were fools and did not follow the law and design a building that could resist a serious multi-floor office fire. Note, that if the above scenario is correct then the towers would collapse in the event of any such fire. The aircraft impact plays no significant role in the sad little tale told here, only the fire.

2.2.1.5 Progression of Collapse

The fact that the towers collapsed in 8-10 seconds (essentially free-fall) is massive evidence that they were deliberately demolished. The fact that they fell at such a rate means that they did not encounter any resistance from the supposedly undamaged parts of the structure. That is, no resistance was encountered from any of the immensely strong parts of the structure that held the building up in the first place. From this one can conclude that the lower «undamaged» parts were actually very damaged (probably by a multitude of small explosive charges as in a controlled demolition).

Construction of WTC 1 resulted in the storage of more than 4 x 10^11 joules of potential energy over the 1,368-foot height of the structure. Of this, approximately 8 x 10^9 joules of potential energy were stored in the upper part of the structure, above the impact floors, relative to the lowest point of impact. Once collapse initiated, much of this potential energy was rapidly converted into kinetic energy. As the large mass of the collapsing floors above accelerated and impacted on the floors below, it caused an immediate progressive series of floor failures, punching each in turn onto the floor below, accelerating as the sequence progressed. This is saying that the WTC towers were designed and built like a house of cards. Real buildings do not exhibit this type of behavior (if they did the designers and/or builders would be hung). As the floors collapsed, this left tall freestanding portions of the exterior wall and possibly central core columns. As the unsupported height of these freestanding exterior wall elements increased, they buckled at the bolted column splice connections, and also collapsed. Perimeter walls of the building seem to have peeled off and fallen directly away from the building face, while portions of the core fell in a somewhat random manner. The perimeter walls broke apart at the bolted connections, allowing individual prefabricated units that formed the wall or, in some cases, large assemblies of these units to fall to the street and onto neighboring buildings below.

Review of videotape recordings of the collapse taken from various angles indicates that the transmission tower on top of the structure began to move downward and laterally slightly before movement was evident at the exterior wall. This suggests that collapse began with one or more failures in the central core area of the building. This is probably correct, after all the central core area is where the explosives would have been set. This is consistent with the observations of debris patterns from the 91st floor, previously discussed. This is also supported by preliminary evaluation of the load carrying capacity of these columns, discussed in more detail in Section 2.2.2.2. The core columns were not designed to resist wind loads and, therefore, had less reserve capacity than perimeter columns. As some exterior and core columns were damaged by the aircraft impact, the outrigger trusses at the top of the building shifted additional loads to the remaining core columns, further eroding the available factor of safety. This would have been particularly significant in the upper portion of the damaged building. In this region, the original design load for the core columns was less than at lower floors, and the column sections were relatively light. The increased stresses caused by the aircraft impact could easily have brought several of these columns close to their ultimate capacity, so that relatively little additional effects due to fire would have been required to initiate the collapse. Once movement began, the entire portion of the building above the area of impact fell in a unit, pushing a cushion of air below it. As this cushion of air pushed through the impact area, the fires were fed by new oxygen and pushed outward, creating the illusion (no illusion) of a secondary explosion.

1 ... 43 44 45 46 47 48 49 50 51 ... 54
Перейти на страницу:
Тут вы можете бесплатно читать книгу 11 сентября 2001 - Тьерри Мейссан.
Комментарии