Категории
Самые читаемые

Безумные идеи - Ирина Радунская

Читать онлайн Безумные идеи - Ирина Радунская

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 44 45 46 47 48 49 50 51 52 ... 85
Перейти на страницу:

Но мечта о сверхсильных магнитах претворилась в действительность уже сегодня.

Сверхпроводящие металлы позволили создать фантастические электромагниты, поддерживающие огромные магнитные поля без затраты электроэнергии. Они в этом отношении напоминают постоянные магниты из закаленной стали или специальных сплавов. Для того чтобы намагнитить кусок стали, достаточно поместить его внутрь проволочной обмотки и на мгновенье пропустить через нее электрический ток. Сталь намагничивается и сохраняет свои магнитные свойства и после выключения тока в обмотке.

Если возбудить круговой электрический ток в сплошном куске сверхпроводника или в замкнутой обмотке из сверхпроводящей проволоки, то ток в них, не встречая сопротивления, будет существовать и после выключения возбудившего его источника. А пока существует электрический ток, действует и окружающее его магнитное поле.

Так работает «постоянный» магнит из сверхпроводника. Он остается магнитом, пока сохраняется состояние сверхпроводимости, а некоторые сплавы остаются сверхпроводящими и при температурах около двадцати градусов выше абсолютного нуля.

Если обмотка магнита сделана из олова или свинца, то достижимое магнитное поле не очень велико. Обмотка же из ниобия позволяет получить в десятки раз более сильное поле. Но самые современные сверхпроводниковые магниты делаются из соединения ниобия с оловом или цирконием. Оно остается сверхпроводящим до минус 255 градусов, а магнит с такой обмоткой, помещенный в жидкий гелий, дает поле в десятки тысяч эрстед.

Но это, конечно, не предел. Теория, разработанная советскими физиками, лауреатами Ленинской премии Ландау, Абрикосовым, Гинзбургом и Горьковым позволяет сознательно подходить к задаче поиска новых сверхпроводящих сплавов. Она уже вскрыла ряд удивительных свойств сверхпроводящих пленок и позволила по-новому подойти к возможности получения сверхпроводящего состояния при обычных температурах. Впервые эта возможность была перенесена из области мечты в разряд серьезных научных задач американским ученым Литтлом. Он предположил, что некоторые полимеры могут оказаться сверхпроводниками и сохранять это свойство и при высоких температурах. Но расчеты Литтла были недостаточно убедительными. Лишь впоследствии молодые физики Ю.П. Бычков, Л.П. Горьков и И.Е. Дзялошинский доказали, что линейный сверхпроводник Литтла может существовать. Но пока это еще теория. Впереди много работы. Может быть, более перспективными окажутся не линейные полупроводники, а сверхпроводящие пленки. Во всяком случае, теоретически «теплый» сверхпроводник уже перестал быть монстром. Он стал реальной целью.

По мнению П.Л. Капицы, низкие температуры несут много новых надежд радиотехнике. Он приводит простой и убедительный пример. Радиоприемник на специальных элементах, некоторые части которого охлаждены до температуры жидкого гелия, приобретает такую повышенную чувствительность, как будто мощность радиостанции при этом подскочила в сотни раз. Конечно, гораздо легче проделать такую операцию, чем увеличивать на колоссальную цифру мощность передатчика.

Псевдочастицы

Но, пожалуй, самая впечатляющая находка в стране абсолютного нуля – псевдочастицы. Как сказать о них? О частицах: протонах, нейтронах, электронах и так далее и так далее (число их все время увеличивается!) – рассказать нетрудно. Они есть, они существуют. Каждая имеет свое лицо, свою биографию, у каждой есть паспорт, где указаны и место жительства и род занятий.

Но то, что ученые назвали компромиссным словом «псевдочастицы», не частицы в обычном смысле. Это скорее явления, но явления очень специфические. Да, они не настоящие частицы, но оказывают влияние на окружающий их микромир, как настоящие.

Как самые настоящие частицы, они участвуют в его жизни, взаимодействуют друг с другом. И в то же время... они не существуют. Они живут лишь на бумаге. Но без них ученые не в состоянии справиться со сложными законами, царящими в микромире. Для создания современных теорий физики вынуждены призвать на помощь наряду с реально существующими частицами и псевдочастицы.

И среди них одна из интереснейших – полярон. Эта псевдочастица удивительных свойств родилась в 1946 году под пером киевского физика-теоретика профессора С.И. Пекара.

Как за человеком в солнечный день движется его тень, так за электроном внутри кристаллической решетки движется облако поляризации, образованное его электрическим зарядом.

Встречные атомы, настигнутые облаком, поляризуются им, как бы связываются с электронами невидимыми нитями. Но и электрону эта связь с окружающими его атомами не обходится даром: он становится как бы тяжелее – масса увеличивается в шесть раз. Эту комбинацию электрона с окружающим его состоянием поляризации и назвали поляроном.

В теории такая комбинация электрона с его облаком поляризации казалась вполне ясной, обоснованной, реально существующей. Но как ее обнаружить, какими средствами подтвердить существование?

Полярон стал предметом пристального внимания физиков. Появились десятки исследований, посвященных этой псевдочастице. Но в большинстве это были теоретические изыскания, так как ни одному физику экспериментатору не удалось непосредственно наблюдать полярон в движении.

Иногда эта затея казалась просто безумной. Стоит ли гоняться за тенью, призраком?

Но ленинградские ученые оказались упрямыми. Они решили оттолкнуться от уже известных вещей. Итак, масса полярона в шесть раз больше массы обычного электрона. Если бы можно было непосредственно взвесить тот и другой, мы получили бы самое лучшее доказательство правильности теории. Но облако взвесить нельзя. Тогда, решили физики, надо проделать такой опыт, в котором бы вес электрона и полярона проявился косвенным путем. Такой опыт вскоре и был проделан.

Если поместить крупинки металла в сильное магнитное поле и воздействовать на них радиоволнами, электроны в металле начнут двигаться по окружности, черпая энергию для этого движения у радиоволн. Электроны будут «танцевать» по кругу в определенном ритме. А если на месте электронов окажутся поляроны? Они тяжелее и, очевидно, «затанцуют» по-другому.

Такая мысль и пришла в голову ученым. Они решили испытать полярон в аналогичном опыте.

Но прежде чем приступить к этому эксперименту, надо было устранить одно мешающее обстоятельство – тепловое хаотическое движение атомов кристалла. Ведь оно нарушает поляронное облако, сопровождающее электрон. Избавиться от этого препятствия помогла техника низких температур. Когда вещество было сильно охлаждено, удалось осуществить задуманный опыт и впервые обнаружить несомненное проявление движущегося полярона. Вот как это случилось.

Подтверждения надо добыть

На охоту за поляроном вышел доктор физико-математических наук Н.М. Рейнов в сопровождении молодых физиков: теоретика А.И. Губанова и экспериментатора Н.И. Кривко.

В качестве поля для охоты они избрали хорошо изученный кристалл закиси меди, а в качестве оружия – мощную технику сантиметровых радиоволн и огромных магнитных полей. Для того чтобы облегчить охоту, они решили вести ее в сверхарктических условиях, погрузив кристалл закиси меди в жидкий гелий. Можно представить себе, с каким волнением ученые приступили к опыту. Кристалл закиси меди погружен в специальный прибор – криостат. Криостат заполнен жидким гелием. Движения атомов в кристалле ослабевают, они как бы замерзают, погружаются в зимнюю спячку. Кривко включает генератор радиоволн. Радиоволны легко проникают сквозь кристалл, практически не поглощаясь им. Затем он включает ток, проходящий через обмотку огромного электромагнита, и медленно увеличивает его силу. Магнитное поле постепенно увеличивается до 1000, 2000,3000 эрстед.

Исследователи внимательно следят за приборами, готовясь уловить момент, когда мощность радиоволн резко упадет. Это будет значить, что электроны в кристалле затанцевали, отобрав энергию, нужную для своего танца, у радиоволн.

Напряженность магнитного поля достигла уже 3500 эрстед, но поглощения радиоволн в кристалле все еще не наблюдается.

Если бы при этом присутствовал посторонний наблюдатель, знающий лишь, что поглощение, связанное с танцем электронов, должно наблюдаться при поле около 2500 эрстед, он пришел бы в волнение. Но ученые спокойны. Они вновь уменьшают ток в обмотке электромагнита, и магнитное поле убывает до нуля. Это был контрольный опыт: при температуре 4,2 градуса выше абсолютного нуля в закиси меди слишком мало свободных электронов, чтобы можно было наблюдать поглощаемую ими энергию, чтобы их танец стал заметным.

1 ... 44 45 46 47 48 49 50 51 52 ... 85
Перейти на страницу:
Тут вы можете бесплатно читать книгу Безумные идеи - Ирина Радунская.
Комментарии