Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » История лазера - Марио Бертолотти

История лазера - Марио Бертолотти

Читать онлайн История лазера - Марио Бертолотти

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 88
Перейти на страницу:

Евгений Константинович Завойский родился в Казани в семье врача. Учился и работал в Казанском университете. Почти со своих студенческих лет он интересовался возможностью использовать радиочастотные электромагнитные поля для изучения строения и свойств вещества. С начала 1933 г. выполнял исследовательские эксперименты по резонансному поглощению радиочастотного излучения в жидкостях и газах. В 1941 г. он стал первым, кто использовал модуляцию постоянного магнитного поля на звуковых частотах в таких экспериментах. В 1944 г. им открыт электронный парамагнитный резонанс, что и стало предметом его докторской диссертации.

В течение 1945—1947 гг. он выполнил серию важных экспериментов, зарегистрировав кривые дисперсии в диапазоне резонанса и получив электронный парамагнитный резонанс в солях марганца. В дальнейшем более 20 лет работал в Курчатовском Институте Атомной Энергии.

Завойский внес вклад в различные области ядерной физики, разработав, в частности, в 1952 г. сцинциляторную трековую камеру[4]. В области физики плазмы он открыл в 1958 г. магнито-акустический резонанс. Награжден Ленинской и Государственной премиями. Его достижения стали известными на Западе лишь после окончания Второй мировой войны. Е. К. Завойский скончался в 1976 г.

Сообщения о первых экспериментах по магнитному резонансу были сделаны Блохом и Парселлом в течение одного месяца и независимо друг от друга. В январском выпуске 1946 г. престижного американского журнала Physical Review, Парселл, Торрей и Паунд (г. р. 1919) сообщили в коротком письме редактору (полученному 24 декабря 1945 г.), что они наблюдали поглощение радиочастотной энергии в твердом материале (парафин) в результате переходов, индуцированных между энергетическими уровнями, которые соответствуют различным ориентациям спина протона в постоянном магнитном поле.

В эксперименте образец парафина помещался в резонатор, который, в свою очередь, располагался между полюсами постоянного магнита. Радиочастотная волна с крайне низким уровнем ее магнитного поля, направленного перпендикулярно постоянному полю, посылалась в этот резонатор, и измерялась ее интенсивность на выходе из резонатора. Когда сильное магнитное поле медленно изменялось, наблюдался резкий резонанс поглощения (рис. 37). Поскольку протон имеет спин 1/2, можно предполагать, что при помещении его в постоянное магнитное поле, он может занять только два положения: либо его спин параллелен полю, либо его спин антипараллелен полю. Разность энергий между этими двумя энергетическими уровнями, которые соответствуют этим двум позициям, при той напряженности магнитного поля, которая была в эксперименте, соответствовала частоте 29,8 МГц. На этой частоте и поглощалась микроволновое излучение (см. рис. 37). При комнатной температуре (при которой и выполнялся эксперимент) разность между числом протонов, выстроенных вдоль магнитного поля и выстроенных против него, крайне мала. Однако полное число протонов было столь велико, что заметный эффект получался как только достигалось термическое равновесие. Ключевым вопросом было время, требуемое для установления термического равновесия между спинами и решеткой. Разность в населенностях этих двух уровней является непременным условием для наблюдения поглощения.

Рис. 37. Кривая поглощения протонного резонанса в растворе нитрата железа, полученная методом Парселла

Авторы это очень хорошо понимали и принимали во внимание конкуренцию между процессами поглощения и вынужденного излучения. Действительно, процессы поглощения включают поглощение фотона микроволнового излучения, что заставляет частицу перейти с низшего на высший уровень. Наоборот, процессу вынужденного излучения соответствует испускание фотона, который подобен фотону, индуцирующему этот процесс, и который заставляет частицу перейти с верхнего на нижний уровень. Поэтому, если эти два процесса поглощения излучения и вынужденного излучения происходят в равной степени, то никакого сигнала изменения излучения, проходящего через образец, не получится. По этой причине важно установление термического равновесия, так как при этом нижний энергетический уровень более населен, чем верхний, и, следовательно, процесс поглощения превалирует.

Здесь может помочь статистическая механика. Согласно Больцману, отношение между числом молекул, находящихся на верхнем энергетическом уровне, к числу молекул, находящихся на нижнем, дается экспоненциальной зависимостью. В показателе с отрицательным знаком стоит разность энергий двух состояний, деленная на фактор kT, где k — постоянная, веденная Больцманом, а Т — абсолютная температура. В нашем случае, разность энергий двух магнитных уровней пропорциональна напряженности приложенного магнитного поля, и, увеличивая поле, можно увеличить эту разность. Однако значения магнитных полей, достигаемых доступной техникой, ограничены. Поэтому разность энергий при комнатной температуре мала и сравнима со значением kT.

Этот факт означает, что, например, в случае водорода и разумного значения магнитного поля (7000 Гаусс) отношение населенностей верхнего и нижнего уровней составит весьма малую величину. Этого, тем не менее, достаточно, чтобы зарегистрировать сигнал поглощения.

Открытие Парселла можно рассматривать, как естественное следствие попыток, предпринятых в Лаборатории Радиации МIТ для уменьшения длины волны радара до 1,25 см. Получилось так, что эта длина волны попадает в пол осу сильного поглощения водяных паров атмосферы, и это препятствовало работе радара. Парселл уделял большое внимание точным методам измерения полос поглощения и в соответствии с этим назвал свою методику резонансным поглощением ядерного магнитного резонанса.

В следующем выпуске Physical Review, снова в виде письма в редакцию, появилось короткое сообщение Ф. Блоха, В. Хансена и М. Паккарда, полученное 29 января 1946 г. Авторы описывали эксперимент в определенном отношении подобный эксперименту Парселла, в котором они использовали воду. В их эксперименте на постоянное магнитное поле, которое прикладывалось в одном направлении (например, вертикальное), накладывалось малое осциллирующее магнитное поле вдоль горизонтального направления. Магнитные моменты ядер образца, первоначально параллельные постоянному полю, возмущались в такой конфигурации малым осциллирующим полем, которое заставляло их прецессировать вокруг этого поля. При резонансной частоте это малое поле может инвертировать направление магнитных моментов. Это, в свою очередь, могло проявиться в эффекте электромагнитной индукции в катушке, помещенной в соответствующее место. Это явление, открытое Фарадеем в 1822 г., заключается в том, что изменяемое магнитное поле индуцирует ток в электрической цепи.

Это исследование Блоха мотивировалось стремлением найти методики для точных измерений магнитного поля. В 1946 г. Блох также дал теоретическое объяснение эксперимента, введя два времени релаксации спиновой населенности. Одно время описывалось, как достижение быстрого термического равновесия спинов ядер с упругими колебаниями материала (спин-решеточная релаксация). Второе время является характеристическим временем, в течение которого поперечные компоненты намагничивания релаксируют к своему равновесию, т.е. к нулю.

Парселл и Блох впервые встретились на собрании Американского физического общества в Кембридже (Массачусетс) в 1946 г. У них всегда были самые дружеские отношения. Когда оба были награждены Нобелевской премией, Блох послал Парселлу телеграмму: «Я думаю, что для Эдда Парселла прекрасно разделить потрясение с Феликсом Блохом».

Ядерный магнитный резонанс, первоначально используемый для изучения магнитных свойств вещества, со временем стал важнейшей медицинской техникой. Поскольку он позволяет измерять сдвиг резонансной частоты, получающийся за счет локального окружения ядра, получается мощный метод химического анализа, позволяющий идентифицировать химические соединения и изучать их строение. При этом важным применением является медицинская диагностика. Ядерный магнитный резонанс позволяет идентифицировать положение магнитных моментов ядер с помощью характерного спектра поглощения. Ядра, дающие сильные сигналы, имеются, например, в водороде, дейтерии, углероде и фосфоре. Эти ядра проявляются по их спектрам ядерного магнитного резонанса, и с помощью специальной техники можно установить их положение и таким образом получать трехмерное изображение.

Первые спектры в живых тканях были получены лишь около 20 лет назад. Причина, почему потребовалось так много времени для разработки этой техники, может быть в том, что в ядерном магнитном резонансе (ЯМР) с переходами связаны очень малые энергии, и поэтому, чтобы получить достаточно сильные сигналы, требуются сильные постоянные поля. Эти поля должны быть крайне однородными во всей области исследуемого образца, который может иметь большие размеры, например человеческое тело. Использование сверхпроводящих магнитов преодолевает эту трудность. Медицинское применение ЯМР сегодня позволяет получать изображения анатомических частей человеческого тела и идентифицировать химические составляющие в организме. Эта диагностика уже получила широкое распространение во многих больницах. Она во многих случаях заменяет и дополняет наряду с ультазвуковой диагностикой (УЗИ) традиционную рентгенографию. Ее преимущества заключаются в высокой чувствительности и исключении вредности рентгеновских лучей. В 2003 г. Нобелевская премия по физиологии и медицине была присуждена американскому химику Полю Латербуру и британскому медику Петеру Мансфилду «за их вклад в визуализацию магнитного резонанса». В 1970-х гг. эти два исследователя, независимо друг от друга, продвинули преобразование технологии ЯМР из спектроскопических лабораторий в клиническую диагностику. Идея была в том, чтобы пространственные изменения сигналов в однородном магнитном поле ЯМР спектрометра связать с теми областями, откуда эти сигналы получаются. Действительно, поскольку резонансная частота спина зависит от силы однородного магнитного поля, то если эта сила различна в разных точках, то и резонансные частоты в разных точках будут различны. Поэтому знание значения магнитного поля в каждой точке позволяет локализовать те ядра, котоые производят сигнал ЯМР. В 1973 г. Латербур опубликовал первое пространственно разрешенное изображение. В 1974-1975 гг. Мансфилд со своими коллегами разработал методики быстрого сканирования в образцах и в 1976 г. получил первое изображение живого человеческого тела. Нобелевская премия явилась оценкой их вклада в разработку полезной клинической методики.

1 ... 45 46 47 48 49 50 51 52 53 ... 88
Перейти на страницу:
Тут вы можете бесплатно читать книгу История лазера - Марио Бертолотти.
Комментарии