Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Биология » Репликация ДНК: учебное пособие - Ирина Спивак

Репликация ДНК: учебное пособие - Ирина Спивак

Читать онлайн Репликация ДНК: учебное пособие - Ирина Спивак

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8
Перейти на страницу:

Очевидно, что активация упоминавшихся выше «ранне– и позднеактивных» ориджинов S.cerevisiae зависит от киназы Dbf4/Сdс7р. Вероятно, в каждом ориджине происходит локальная регуляция его активности дополнительными протеинкиназами, например Rad53. Киназа Rad53 блокирует запуск "позднеактивных" ориджинов в ранней S-фазе. Когда это блокирование устраняется, киназа Dbf4/Сdс7р активирует МСМ, что приводит сразу к нескольким последствиям: стимуляции геликазной активности МСМ и связыванию белка RРА и ДНК-полимеразы α с ориджинами репликации. Присоединение ДНК-полимеразы α к RС, раскручивание ДНК в ориджине и синтез РНК-праймера завершают процесс инициации репликации ДНК эукариот. Следует отметить, что роль ДНК-полимеразы α ограничивается только запуском репликации ДНК. Эта ДНК-полимераза не способна к процессивному, то еть протяженному, синтезу ДНК и не обладает корректирующей активностью. Поэтому в дальнейшем в процессе репликации она добавляет к РНК-праймеру приблизительно 20 нуклеотидов и замещается ДНК-полимеразами δ или ε.

Роst-RС, с образования которого начинается вся цепь событий процесса инициации репликации ДНК, в S-фазе клеточного цикла претерпевает изменения. Эти изменения касаются сродства ОRС к ДНК. Так, например, белок Orc1 Хепориs образует прочный комплекс с хроматином в ранней интерфазе до тех пор, пока не завершится сборка рге-RС. Затем в S-фазе сродство Огс1 к ДНК уменьшается. У млекопитающих Огс1 диссоциирует из хроматина в S-фазе, превращается в моно– или диубиквитинированную форму, затем деубиквитинируется и вновь связывается с ДНК при переходе из М– в G-1-фазу. Белок Огс2, напротив,

остается связанным с хроматином на протяжении всего клеточного цикла и не является субстратом для убиквитинирования. В клетках человека в S-фазе из хроматина диссоциирует комплекс белков, содержащий Огс1 и Огс2, который реассоциирует в конце митоза. В клетках дрожжей S.ротbе ОRС подвергается посттрансляционным изменениям в клеточном цикле: в фазе S начинается фосфорилирование одной из его субъединиц, Огс2, которое достигает максимума в фазах G2 и М. Таким образом, в клетках эукариот один из механизмов, предотвращающих повторную репликацию уже реплицированного хроматина, связан с инактивацией роst-RС либо путем диссоциации из него Огс1 (у высших эукариот), либо путем фосфорилирования Огс2 (у низших эукариот).

Таблица 2

Комплексы инициации транскрипции у эукариот

Для облегчения понимания последовательности связывания различных белков в зоне инициации репликации см. таблицу 2.

В последние несколько лет значительные успехи достигнуты в понимании механизмов регуляции практически каждой стадии инициации репликации. Они осуществляются на уровне функционирования всех компонентов, образующих пост-, пре– и репликативный комплексы. Эти компоненты подвергаются воздействию не одного, а ряда различных факторов. Примером этому служит регуляция комплекса МСМ, активность которого напрямую зависит от белков Сdc6, Мст10, Сdt1, циклин-зависимых киназ, киназы Dbf4/Сdс7, фосфатаз. До сих пор мало понятны закономерности процесса инициации репликации ДНК в эмбриогенезе и те факторы, которые влияют на эти процессы.

Глава 4. Механизм образования и необходимость РНК-праймера

4.1. Синтез праймера для полимеразной реакции

ДНК-полимеразы не могут начинать синтез ДНК непосредственно на матрице, а способны только добавлять новые дезоксирибонуклеотидные звенья к 3'-концу уже имеющейся полинуклеотидной цепи. Такую заранее образованную цепь, к которой добавляются нуклеотиды, называют праймером (или затравкой), она состоит из РНК. Короткую РНК-затравку синтезирует из рибонуклеозидтрифосфатов фермент, называемый ДНК-праймазой. Праймазная активность может принадлежать либо отдельному ферменту, либо одной из субъединиц ДНК-полимеразы. Праймаза связывается с геликазой и ДНК, формируя структуру, называемую праймосомой, и синтезирует РНК-праймер. РНК-праймеры удлиняются действием ДНК-полимеразы III у прокарит и ДНК-полимеразой α у эукариот. Схематически этот процесс на отстающей нити показан на рис. 8. У E.coli праймеры синтезирует специальный отдельный фермент – праймаза.

Рис. 8. РНК-праймеры на отстающей нити

4.2. Понятие об РНК-ДНК дуплексе

ДНК обычно присутствует в клетке в В-форме. Кроме этого, описаны еще две возможные формы состояния ДНК – А и Z. Эти формы представлены на рис. 9. Взаимодействие оснований в В-форме представлено на рис. 10.

У А-формы плоскости оснований составляют угол в 20 градусов с перпендикуляром к оси спирали (у В-формы – 0), расстояние между парами оснований уменьшается до 0.29 нм (у В-формы – 0.34 нм), число пар на виток увеличивается до 11–12 (у В-формы – 10).

Пары оснований в А-форме очень сильно отодвинуты от оси спирали к периферии молекулы – почти на половину радиуса; сдвиг достигает 4–5 Å, а в В-форме ДНК он близок к нулю.

Рис. 9. Возможные формы ДНК

При образовании праймера (подробнее сам процесс его синтеза будет представлен при описании ДНК-полимеразы α эукариот) образуется ДНК-РНК дуплекс, который существует в А-форме. Таким

образом, в А-форме дуплекса обеспечивается оптимальный баланс между гидрофобными и комплементарными взаимодействиями оснований матрицы и праймера.

Рис. 10. Взаимное расположение нуклеотидов в ДНК в В-форме

4.3. Ключевые ферменты, участвующие в синтезе ДНК

Многие известные теперь детали процесса репликации ДНК удалось установить благодаря исследованию поведения и активности ферментов, обеспечивающих работу аппарата репликации. Наиболее полно изучен механизм репликации бактериальной ДНК, особенно ДНК Е. соli и бактериофагов, которые в ней размножаются. Довольно хорошо известны и ферменты репликации дрожжей, Drosophila, млекопитающих.

4.3.1. ДНК-полимеразы

ДНК-подимсразы присутствуют во всех прокариотических и эукариотических клетках. Более того, многие вирусы бактерий и животных индуцируют образование вирус-специфических ДНК-полимераз или белков, способствующих эффективному участию ДНК-полимераз клеток-хозяев в репликации вирусной ДНК.

Многие прокариотические и эукариотические ДНК-полимеразы выделены в чистом виде, а их физические и ферментативные свойства детально охарактеризованы. И хотя эти свойства не совсем идентичны, механизм катализа для всех указанных ферментов в общих чертах одинаков.

Рис. 11. Общий принцип строения ДНК-полимераз.

В первичной структуре ДНК-полимераз эукариот присутствуют консервативные мотивы, гомологичные соответствующим мотивам прокариотических ферментов. Это подтверждает, что все ДНК-синтезирующие ферменты имеют общий план строения. Общий принцип строения ДНК-полимераз показан на рис. 11. По форме ДНК-полимсразы можно уподобить полураскрытой кисти правой руки, в которой ладонь, большой палец и остальные пальцы представляют три основных пространственных домена и формируют полость, удерживающую ДНК-матрицу и затравку в ходе синтеза. Консервативные мотивы А, В и С образуют активный центр в домене «ладони», «пальцы» удерживают однонитевую матрицу, а «большой палец» прижимает праймер – матричный двунитевой участок.

Применительно к различным типам ДНК-полимераз эукариот эта модель может быть модифицирована. ДНК-полимеразы работают совместно с различными белковыми комплексами, удерживающими их в вилке репликации. Чаще всего их называют «зажим» и «загрузчик зажима» («sliding clamp», «clamp loader»).

Рис. 12. Загрузка ДНК-полимеразы

После объединения ДНК-полимеразы с зажимом, «загрузчик зажима» отходит от места реакции, но держится поближе к отстающей нити, чтобы провести загрузку на новом месте объединения праймер-матрица, как только ДНК-полимераза диссоциирует при завершении синтеза предыдущего фрагмента Оказаки. Этот процесс схематически изображен на рис. 12. Подробно об этих комплексах у эукариот и их роли в репликации будет рассказано далее.

4.3.1.1. ДНК-полимеразы прокариот

Полимеразы прокариот обозначаются римскими цифрами (в отличие от полимераз эукариот, которые обозначаются греческими буквами). Наиболее полно изучена ДНК-полимераза I (Ро11) Е. соli. Она представляет собой одиночный полипептид с мультифуикциональными активностями. В качестве ДНК-полимеразы Ро11 катализирует перенос 5'-дезоксинуклеотидильных единиц дезоксинуклеозид-5'-трифосфатов к З'-ОН-группе в цепи ДНК или РНК, после чего происходит спаривание перенесенного основания с соответствующим основанием комплементарной цепи ДНК. Таким образом, для полимеризации ферменту необходимы праймер в качестве акцептора дезоксинуклеотида и матрица, определяющая присоединение нужного нуклеотида. Помимо полимеризации нуклеотидов, Ро11 катализирует две другие реакции, биологическая роль которых очень важна. В одной из них происходит гидролиз фосфодиэфирных связей в одной цепи ДНК или на неспаренном конце дуплексной ДНК, причем за один акт удаляется один нуклеотид, начиная с 3'-конца цепи (3'-5'-экзонуклеаза). Вторая реакция также состоит в отщеплении нуклеотидов, но гидролиз начинается с 5'-конца двунитевой ДНК в направлении к 3'-концу (5'-3'-экзонуклеаза). Эти различные активности присущи разным сайтам полипептидиой цепи РоlI, Если in vitro обработать РоlI трипсином, то полипептидная цепь расщепится на большой и малый фрагменты. Большой, С-концевой фрагмент («фрагмент Кленова») сохраняет ДНК-полимеразную и 3' -5'-экзонуклеазную активности; малый N-концевой фрагмент обладает только 5'-3'-экзонуклеазной активностью.

1 2 3 4 5 6 7 8
Перейти на страницу:
Тут вы можете бесплатно читать книгу Репликация ДНК: учебное пособие - Ирина Спивак.
Комментарии