ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.
Шрифт:
Интервал:
Закладка:
Математические выражения, соответствующие этим диаграммам — так называемым «диаграммам Файнмана» — легко записать, но труднее вычислить, чем соответствующие выражения для голых электронов. Самое сложное то, что фотон — реальный или виртуальный — может на мгновение превратиться в пару электрон-позитрон. Между ними происходит аннигиляция, и, как по волшебству, первоначальный фотон появляется снова! Этот процесс показан на рисунке ниже:
Стрелка, указывающая направо, — электрон, налево — позитрон. Как вы, наверно, догадались, эти виртуальные процессы могут вставляться один в другой до любой глубины. В результате может получиться довольно сложная диаграмма, такая, как показана на рис. 35. На данной диаграмме Файнмана один электрон входит слева в точке А, и после серии удивительных акробатических трюков выходит справа в точке В. Отсюда видно, что линии как электрона, так и фотона могут быть сколько угодно «украшены». Такую диаграмму чрезвычайно трудно вычислить.
Рис. 35. Диаграмма Файнмана. показывающая распространение ренормализованного электрона от А до В. Время возрастает слева направо, это значит, что в тех местах, где стрелка указывает справа налево, электрон движется «обратно во времени». Или, говоря более интуитивно, антиэлектрон(позитрон) движется вперед во времени. Фотоны — свои собственные античастицы, и поэтому их линии не нуждаются в стрелках
У этих диаграмм своя «грамматика», позволяющая воплотиться в жизнь только определенным картинкам. Например, ситуация, изображенная ниже, невозможна:
Вы можете возразить, что это не является «правильно-сформированной» диаграммой Файнмана. Грамматика, о которой мы говорим, берет начало в основных законах физики, таких, как сохранение энергии, сохранение заряда, и т. д. Подобно грамматикам человеческих языков, эта грамматика рекурсивна — в ней возможны структуры, вставленные одну в другую. Можно было бы нарисовать серию схем рекурсивных переходов, определяющих «грамматику» электромагнитных взаимодействий.
Когда голые электроны и голые фотоны вступают в подобные сложные, запутанные взаимодействия, результатом являются ренормализованные электроны и фотоны. Таким образом, чтобы понять, каким образом реальный, физический электрон распространяется от А до В, физик должен найти что-то вроде среднего арифметического для бесконечного множества всех возможных графиков, включающих виртуальные частицы. Что это, если не дзен-буддизм, да еще в превосходной степени?…
Таким образом, физическая — ренормализованная — частица включает (1) голую частицу и (2) путаницу виртуальных частиц, сложнейшим рекурсивным образом связанных между собой. Значит, существование каждой реальной частицы включает существование бесконечного множества других частиц, содержащихся в виртуальном «облаке», окружающем эту частицу, когда она движется. И, разумеется, каждая из виртуальных частиц в облаке несет с собой свое собственное виртуальное облако — и так далее, до бесконечности.
Физики, изучающие элементарные частицы, не в состоянии справиться с подобной сложностью; чтобы понять поведение электронов и фотонов, они используют приближения, принимающие во внимание только самые простые диаграммы Файнмана. К счастью, чем сложнее диаграмма, тем меньше ее значимость. Никто не знает, каким образом можно учесть все бесконечное множество возможных диаграмм, чтобы описать поведение полностью ренормализованного физического электрона. Однако, рассматривая сотни простейших диаграмм некоторых процессов, физики смогли правильно предсказать одну из величин (так называемый g-фактор муона) с точностью до девяти знаков!
Ренормализация происходит не только среди электронов и фотонов. Физики используют идею ренормализации каждый раз, когда они пытаются понять поведение любых взаимодействующих частиц. Так что протоны и нейтроны, нейтрино, пи-мезоны, кварки — все звери этого субатомного зверинца — все имеют голые и ренормализованные версии в физических теориях. И из миллиардов этих пузырей в пузырях состоят все штуковины и чепуховины мира.
Копии и схожестьДавайте теперь снова взглянем на График G. Возможно, читатель помнит, что во введении мы говорили о разных формах канонов. Каждый тип канона использовал основную тему и копировал ее с помощью изоморфизма, или сохраняющей информацию трансформации. Иногда копии получались вверх ногами, иногда задом наперед, а иногда растянутые или сокращенные… В Графике G есть все эти типы трансформации, и даже больше. Отображение всего графика в его частях требует изменения размеров, искажения, отражения и так далее. И все же мы можем говорить о некоей основной тождественности, которую при определенном усилии можно заметить — особенно, если ваш глаз уже натренирован на INT.
Эшер использовал идею о частях объекта, являющихся копией самого этого объекта, в своей гравюре на дереве «Рыбы и чешуйки» (Рис. 36). Конечно, эти рыбы и чешуйки схожи только в том случае, если мы рассматриваем картину на достаточно абстрактном уровне. Каждый знает, что рыбьи чешуйки — вовсе не уменьшенные копии самой рыбы, так же как и клетки рыбы не являются ее крохотными копиями. Однако ДНК, содержащаяся в каждой из рыбьих клеток, и есть, в действительности, сильно уменьшенная «копия» самой рыбы — таким образом, гравюра Эшера правдивее, чем кажется.
Рис. 36. М. К. Эшер. Рыбы и чешуйки. (Гравюра на дереве, 1959).
Что именно делает всех бабочек «похожими» друг на друга? Отображение одной бабочки на другую не совпадает по клеткам; скорее, оно совпадает по функциональным органам, отчасти на макроскопическом и отчасти на микроскопическом масштабе. Вместо точных пропорций сохраняются функциональные отношения частей. Именно этот тип изоморфизма связывает между собой бабочек на гравюре Эшера «Бабочки» (рис. 37). То же верно и для более абстрактных бабочек Графика G, связанных между собой математическими отображениями одной функциональной части в другую. При этом полностью игнорируются пропорции линий, углы, и тому подобное.
Рис. 37. М. К. Эшер. «Бабочки» (гравюра на дереве, 1950).
Перенося это исследование схожести на еще более высокий уровень абстракции, мы можем спросить: «Что же делает схожими все картины Эшера?» Было бы смешно пытаться отобразить их, часть за частью, одну на другую. Удивительно то, что ответ содержится даже в самом крохотном фрагменте картины Эшера или композиции Баха. Подобно тому, как ДНК рыбы содержится внутри самого малюсенького кусочка этой рыбы, авторская «подпись» содержится в самом маленьком кусочке его произведения. Для этого явления у нас нет другого обозначения, кроме расплывчатого и ускользающего понятия «стиля». Мы снова и снова сталкиваемся со «схожестью-внутри-различия» и с вопросом:
Когда два предмета схожи между собой?
В этой книге мы вернемся к нему еще не раз и, рассмотрев его под всевозможными углами, увидим, насколько такой простой вопрос связан с природой разума. То, что этот вопрос возник в главе, посвященной рекурсии, не случайно, рекурсия — это область, в которой схожесть-внутри-различия играет центральную роль. Рекурсия основана на «одном и том же» событии, происходящем одновременно на нескольких различных уровнях. При этом события на разных уровнях не одинаковы — скорее мы находим в них какую-либо общую черту, как бы они не различались. Например, в «Маленьком гармоническом лабиринте» истории на разных уровнях весьма отличны друг от друга, и их схожесть заключается лишь в двух фактах: (1) все они — истории и (2) во всех историях действуют Ахилл и Черепаха. В остальном, эти истории радикально отличаются одна от другой.