Первые три минуты - Стивен Вайнберг
Шрифт:
Интервал:
Закладка:
Одна из возможностей зарегистрировать очень слабое взаимодействие проявляется, когда это взаимодействие когерентное и дальнодействующее, так что оно может суммироваться и приводить к макроскопическим эффектам. Было показано [54], что единственными частицами, обмен которыми приводит к таким силам, являются безмассовые частицы со спинами 0, 1 или 2. Более того, одной лишь лоренц-инвариантности достаточно, чтобы продемонстрировать, что дальнодействующие силы, обусловленные произвольной частицей с нулевой массой и спином, равным 2, должны описываться общей теорией относительности [55]. Итак, с этой точки зрения нам не следует чересчур удивляться тому, что гравитация является единственным (из известных сейчас) взаимодействием, которое, кажется, не описывается перенормируемой теорией поля, — это почти единственное сверхслабое взаимодействие, которое могло быть обнаружено. А тот факт, что гравитация хорошо описывается общей теорией относительности в макроскопических масштабах, не должен приводить нас к заключению о том, что общая теория относительности верна при 1019 ГэВ.
Неперенормируемые эффективные взаимодействия можно также зарегистрировать, если они нарушают какие-либо законы сохранения, являющиеся точными без учета таких взаимодействий. Первоочередными кандидатами на нарушение являются законы сохранения барионного и лептонного чисел. Схема SU(3) — и SU(2) × U(1) — калибровочных симметрий сильных, слабых и электромагнитных взаимодействий приводит к замечательному следствию, гласящему, что все перенормируемые взаимодействия известных частиц автоматически сохраняют число барионов и лептонов. Однако тот факт, что обычное вещество оказывается весьма стабильным, и что распад протона не обнаружен, еще не должен привести к выводу о фундаментальном характере законов сохранения чисел барионов и лептонов. С той точностью, с которой они были проверены, законы сохранения барионов и лептонов могут быть объяснены как динамические следствия других симметрий точно так же, как сохранение странности было объяснено в рамках КХД. Но могут существовать сверхтяжелые частицы, и эти частицы могут обладать необычными свойствами преобразований SU(3) или SU(2) × U(1). В этом случае не видно никаких оснований, почему бы при их взаимодействиях сохранялись числа барионов и лептонов. Сомневаюсь, что барионное и лептонное числа останутся неизменными. Действительно, сам факт, что Вселенная, видимо, содержит избыток барионов над антибарионами, должен заставить нас подозревать, что процессы с несохранением числа барионов действительно имели место. Если эффекты слабого несохранения барионного или лептонного числа, такие, как распад протона или наличие массы у нейтрино, будут открыты экспериментально, в нашем распоряжении останутся только калибровочные симметрии как единственные истинные внутренние симметрии природы. Такой вывод я бы рассматривал как наиболее удовлетворительный.
Идея о новой шкале сверхбольших масс возникла несколько другим образом [56]. Если «великое объединение» сильных и электрослабых калибровочных взаимодействий как-либо окажется возможным в той или иной форме, то следует ожидать, что все калибровочные константы связи SU(3) и SU(2) × U(1) будут сравнимы по величине. (В частности, если SU(3) и SU(2) × U(1) являются подгруппами большей простой группы, то отношения квадратов констант связи задаются рациональными числами порядка единицы [57].) Однако такая возможность кажется противоречащей очевидному факту, что сильные взаимодействия сильнее слабых и электромагнитных взаимодействий. В 1974 г. Джорджи, Квинн и я предположили, что масштаб великого объединения, при котором все константы связи становятся сравнимыми по величине, лежит при огромной энергии. Поэтому истинная причина того, что константа сильной связи настолько больше электрослабых связей при обычных энергиях, кроется в асимптотической свободе КХД, в которой эффективная константа связи медленно возрастает по мере того, как энергия падает от масштаба великого объединения к привычным значениям. Константа сильной связи меняется очень медленно (как 1/(ln Е)1/2), поэтому масштаб великого объединения должен быть огромным. Мы нашли, что для довольно широкого класса теорий великое объединение происходит где-то поблизости от 1016 ГэВ. Эта энергия не слишком сильно отличается от планковской энергии 1019 ГэВ. Время жизни протона оценить с достаточно большой точностью трудно, но мы дали приблизительное значение, равное 1032 лет, которое, видимо, удастся проверить экспериментально уже через несколько лет. (Эти оценки были улучшены более подробными вычислениями, проделанными разными авторами [58].) Мы также вычислили значение параметра смешивания sin2Θ, которое оказалось равным примерно 0,2. Оно не сильно отличается от значения 0,23 ± 0,02, полученного сейчас в эксперименте [40]. Важной задачей будущих экспериментов с нейтральными токами является улучшение той точности, с которой известна величина sin2Θ. Интересно узнать, действительно ли она согласуется с предсказанным значением.
Для того чтобы элементарные скалярные частицы, появляющиеся в теории великого объединения, приводили к спонтанному нарушению электрослабой калибровочной симметрии при нескольких сотнях ГэВ, необходимо (и достаточно), чтобы они не приобрели сверхбольших масс при спонтанном нарушении калибровочной группы великого объединения [59]. В этом нет ничего невозможного, но я не смог до конца продумать вопрос, почему это должно иметь место. (Эта проблема может быть связана с давней загадкой, почему квантовые поправки не приводят к огромной космологической постоянной. В обоих случаях мы имеем дело с аномально малым «су-перперенормируемым» членом в эффективном лагранжиане, который следует положить равным нулю. В случае с космологической постоянной это требование должно выполняться с точностью до 10-50.) Если же нет таких элементарных скалярных частиц, которые не приобретают сверхбольших масс при нарушении калибровочной группы великого объединения, тогда, как я уже упоминал, должны появляться сверхмощные силы, чтобы образовать составные голдстоуновские и хиггсовские бозоны, которые связаны со спонтанным нарушением SU(2) × U(1). Такие силы могут появляться довольно естественным образом в теориях великого объединения. В качестве одного из примеров предположим, что великая калибровочная группа разрушается не до прямого произведения SU(3) × SU(2) × U(1), а до SU(4) × SU(3) × SU(2) × U(1). Поскольку группа SU(4) больше группы SU(3), ее константа связи растет с уменьшением энергии быстрее, чем КХД-константа. Поэтому SU(4) — сила становится большой при намного более высоких энергиях, чем несколько сотен МэВ, когда сильными становятся взаимодействия в КХД. Обычные кварки и лептоны были бы нейтральными относительно SU(4). Они не чувствовали бы этой силы. Но другие фермионы могли бы нести квантовые числа SU(4) и поэтому обладали бы большими массами. Можно даже представить себе последовательность все возрастающих подгрупп великой калибровочной группы, которая заполнила бы огромную энергетическую область вплоть до 1015 или 1019 ГэВ массами частиц, рождающихся при таких последовательно усиливающихся взаимодействиях.
Если существуют элементарные скаляры, вакуумные ожидания которых ответственны за массы обычных кварков и лептонов, то эти массы в членах порядка α будут чувствовать радиационные поправки, обусловленные сверхтяжелыми векторными бозонами великой калибровочной группы. Возможно, что объяснить значения величин, подобных mе/mμ, без полной теории великого объединения не удастся. С другой стороны, если таких элементарных скаляров нет, то почти все детали теории великого объединения оказываются забытыми в эффективной теории поля, описывающей физику при обычных энергиях. Тогда может оказаться возможным вычисление масс кварков и лептонов просто через свойства процессов при доступных энергиях. К сожалению, до сих пор никому не удалось показать, как можно получить таким способом что-либо напоминающее наблюдаемую картину распределения масс [60].
Отставив в сторону все эти неопределенности, предположим, что существует истинно фундаментальная теория, характеризуемая шкалой энергий порядка от 1016 до 1019 ГэВ, при которой сильные, электрослабые и гравитационные взаимодействия объединяются. Возможно, это будет обычная перенормируемая квантовая теория поля, но в настоящий момент, если мы учитываем гравитацию, не ясно, как ее построить. Однако если она перенормируемая, то чем же тогда задается бесконечный набор констант связи, которые необходимы, чтобы поглотить все ультрафиолетовые расходимости такой теории? Как я считаю, ответ заключается в том, что квантовая теория поля, которая родилась около пятидесяти лет назад в результате объединения квантовой механики с теорией относительности, оказалась прекрасным, но не очень здоровым ребенком. Как указывали много лет назад Ландау и Челлен, квантовая теория поля при сверхвысоких энергиях подвержена болезням всех сортов — тахионы, духи и т. п. — и нужны специальные лекарства для того, чтобы она выжила. Один из способов избежать возможных болезней квантовой теории поля состоит в том, чтобы сделать ее перенормируемой и асимптотически свободной. Однако имеются и другие способы. Например, даже бесконечный набор констант связи может стремиться к некой фиксированной, отличной от нуля точке по мере роста к бесконечности энергии, при которой они измеряются. Но требование наличия такого характерного поведения обычно накладывает столь много ограничений на эти константы, что в результате остается только конечное число свободных параметров [61] — в точности как для теорий, перенормируемых в обычном смысле слова. Таким образом, я думаю, что тем или иным способом квантовая теория поля окажется упрямо ограничивающей возможные подходы, так что она позволит описать лишь небольшое число возможных миров, среди которых, как мы надеемся, находится и наш мир.