Категории
Самые читаемые
PochitayKnigi » Документальные книги » Биографии и Мемуары » Ранняя философия Эдмунда Гуссерля (Галле, 1887–1901) - Неля Васильевна Мотрошилова

Ранняя философия Эдмунда Гуссерля (Галле, 1887–1901) - Неля Васильевна Мотрошилова

Читать онлайн Ранняя философия Эдмунда Гуссерля (Галле, 1887–1901) - Неля Васильевна Мотрошилова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 52 53 54 55 56 57 ... 174
Перейти на страницу:
и элегантными, его семинары – живыми и вдохновляющими».[149] Темы лекций – типичные для математических курсов: дифференциальное и интегральное исчисление, аналитическая геометрия, аналитическая механика, теория функций, теория чисел, высшая алгебра, теория алгебраических рядов, теория тригонометрических рядов, исчисление вероятностей.

Итак, Кантор читал лекции по очень широкому кругу математических проблем. Надо сказать, что приведенное ранее мнение венгерского математика А. Кертеша о «ясности» лекций Кантора разделяли далеко не все студенты. Возможно, для немалого числа студентов, особенно для начинающих, они были достаточно трудны. Любопытно признание самого Кантора, которое он сделал в письме от 20.10.1884 года своему другу шведскому математику Миттаг-Лефлеру: «Предположительно я в каких-то семестрах совсем прекращу читать здесь (в Галле. – Н. М.) лекции по математике, потому что читать такие необходимые для моей дисциплины курсы лекций, как дифференциальное и интегральное исчисление, аналитическая геометрия и механика и т. д. мне со временем все меньше нравится; я вместо этого стану читать философские (!) лекции, что мне при моих интересах не должно представлять труда; в них, как я думаю, я мог бы сделать что-то полезное для студентов; а требующиеся здесь математические лекции вполне могут взять на себя другие люди. При этом от моей математической литературной деятельности мне не требуется отказываться».[150]

Очень важно и другое указание исследователей: лекции именно по теории множеств Кантор не только не читал, но даже никогда не объявлял! В лучшем случае эта теория обсуждалась на семинарах.[151] Одним из негативных следствий было отсутствие у Кантора именно в Галле сколько-нибудь заметных учеников, которые занимались бы теорией множеств. Зато в других городах и университетах нашлись математики (например, Феликс Хаусдорф – Hausdorff), которые вписали свое имя в разработку учения о множествах. Один из подававших большие надежды последователей Кантора, мюнхенский приват-доцент Людвиг Шеффер (Scheffer), которого учитель причислял к самым талантливым среди молодых людей, к сожалению, рано умер.[152]

Итак, темы лекций, которые выходили бы за рамки «математической рутины», были весьма малочисленны – да и они, как правило, только объявлялись, а не читались. Например, в 1885 году Кантор объявил тему: «Объяснение произведений Лейбница», что биографы связывают со все более пристальным интересом математика к истории философии.[153] А в 1898 году (увлекшись гипотезой о том, что Шекспир – не кто иной, как Френсис Бэкон) Кантор намеревался прочесть (но не прочел) лекцию на тему – «Френсис Бэкон, его жизнь и сочинения». В 1900 году объявлена (но не прочитана из-за отпуска) тема «Об истинном авторе сочинений, изданных под именем Якоба Бёме, и о сущности его философии». Небезынтересно, что в зимнем семестре 1891/92 гг. была объявлена тема «О понятии числа» (совпадающая с темой габилитационной работы Гуссерля). Но и эти лекции не состоялись – как будто бы из-за недостаточного количества записавшихся на них слушателей (но, возможно, из-за разногласий с кантианцами, которые не хотели «засилья» математических тем на философском факультете).

Поскольку в этой нашей работе речь непосредственно идет о гуссерлевском пребывании в Галле 1887–1901 годов, то необходимо особо подчеркнуть также и значение дружеских отношений в том круге, центром которого как раз и был Г. Кантор. Кантор прижился в городе Галле. Здесь он женился на замечательной, художественно одаренной женщине Вали (Vally) (урожденной Гутман), ставшей прекрасным другом мужа, хозяйкой всегда открытого для друзей и студентов профессорского дома. Кстати, о доме. С 1886 года и вплоть до смерти он жил со своей растущей семьей (с 1875 по 1887 гг. родилось шестеро детей) на улице Генделя, в доме № 13. (Превосходный дом был построен на отцовские деньги.) «Дом, построенный Кантором в 1885 году на краю города Галле, был, как и другие профессорские дома того времени, своего рода духовным, культурным центром, в котором встречались студенты, профессора, знаменитые люди. Гостями Г. Кантора были (менее известные у нас фамилии пишу по-немецки. – Н. М.): хирург Richard von Volkmann (1830–1889), философы Ганс Файхингер (1852–1933) и Эдмунд Гуссерль (1859–1938), экономист Johannes Conrad (1839–1915), юрист, специалист по уголовному праву Franz von Liszt (1851–1919), археолог Карл Роберт (1850–1922), математик Albert Wangerin (1844–1933), историк искусства Gustav Droysen (1838–1908), музыкант и ректор певческой академии Robert Franz (1815–1892)».[154] Современники отмечали, что душой дома была радушная жена Кантора Валли. Нам важно: Гуссерль был в доме Кантора постоянным и желанным гостем.

Теперь я кратко разберу те философско-математические идеи Кантора, которые, по моему мнению, должны были повлиять и действительно повлияли на становление философских идей Гуссерля.

§ 2. Философская ориентированность математических исследований Г. Кантора

Связь с философией – характерная черта немецкой математики XIX века. В этом отношении Г. Кантор не составляет исключения. Но в его математических исследованиях можно найти немало особенностей именно в характере поворота к философии, и как раз они, полагаю, заинтересовали Гуссерля. Рассмотрим проблему подробнее.

В пользу той идеи, что математические исследования Кантора всегда были тесно связаны с философией, можно привести немало доказательств. Обратим внимание уже и на красноречивый подзаголовок упомянутой ранее работы Кантора: «Математически-философский опыт (построения) учения о бесконечности». И этот опыт (Versuch), как я далее попытаюсь показать, был действительно проникнут философией.

Начиная уже с обоснования понятийной базы (ее разъяснения нам особенно важны, потому что на них опирается Гуссерль в «Философии арифметики»), Г. Кантор вводит в свою работу философские и, в частности, историко-философские элементы. Присмотримся к определению центрального канторовского понятия «Mannigfaltigkeitslehre», «учение о многообразии». «Этим словом, – поясняет Кантор, – я обозначаю весьма широкое научное понятие (Lehrbegriff), которое я пытался образовать, имея в виду специальную форму арифметического или геометрического учения о множествах (Mengenlehre). Под многообразием, или множеством (обратите внимание на это «или», «oder». – Н. М.), я пониманию именно то любое многое (Viele), которое можно трактовать как нечто одно (Eines), т. е. всякое целостное понятие определенных элементов, которое – в соответствии с некоторым законом – может быть объединено в целостность. И я полагаю благодаря этому определить нечто родственное платоновскому эйдосу или идее agathon, как и тому, что Платон в своем диалоге “Филеб, или высшее благо” называет agathon. Он противопоставляет это апейрону или безграничному, неопределенному, каковое я называю не-собственно-бесконечным <…> Платон сам поясняет, что эти понятия имеют пифагорейское происхождение».[155]

Есть все основания придать этому фундаментальному определению и основанной на нем концепции Кантора чрезвычайное значение. Во-первых, становятся совершенно ясными философские истоки теории множеств, восходящие к самым древним философским идеям и образцам. Ведь уже в древней философии обсуждалась та проблема, которая в математике эпохи Кантора стала актуальной: объединение Многого в

1 ... 49 50 51 52 53 54 55 56 57 ... 174
Перейти на страницу:
Тут вы можете бесплатно читать книгу Ранняя философия Эдмунда Гуссерля (Галле, 1887–1901) - Неля Васильевна Мотрошилова.
Комментарии