Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Читать онлайн Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 52 53 54 55 56 57 ... 116
Перейти на страницу:

Рис. 8.4. Линии сетки соответствуют обычным протяжённым измерениям; кружками показаны новые малюсенькие свёрнутые измерения. Подобно круговым петелькам, образующим ворс ковра, эти кружки существуют в каждой точке протяжённых измерений, однако чтобы не загромождать рисунок, мы нарисовали их только в узлах сетки

Несмотря на очевидное сходство с Садовым шлангом, есть и несколько важных различий. Вселенная имеет три протяжённых пространственных измерения (мы показали только два из них) по сравнению с одним таким измерением у Садового шланга. Однако ещё важнее то, что на этом рисунке мы показали пространственную структуру самой Вселенной, а не просто объекта (такого как Садовый шланг), который существует внутри Вселенной. Но основная идея остаётся неизменной: если дополнительные, свёрнутые циклические измерения нашей Вселенной, подобные круговым ободкам на Садовом шланге, являются чрезвычайно малыми, их гораздо труднее обнаружить, чем явно наблюдаемые протяжённые измерения. На самом деле, если размер этих измерений достаточно мал, их невозможно обнаружить даже с помощью самых мощных инструментов. Что очень важно, циклическое измерение представляет собой не просто какое-то вздутие внутри привычных протяжённых измерений, как может показаться при взгляде на рисунок. Напротив, циклическое измерение представляет собой новое измерение, которое существует в каждой точке пространства обычных измерений, наряду с измерениями вверх-вниз, влево-вправо и вперёд-назад, которые также существуют в каждой точке. Это новое и независимое направление, в котором мог бы двигаться муравей, если бы он был достаточно мал. Чтобы определить пространственное положение такого микроскопического муравья, нам потребуется указать, где он находится в обычных пространственных измерениях (представленных сеткой), а также где он расположен на циклическом измерении. Для представления информации о расположении в пространстве потребуется четыре числа; если добавить время, пространственно-временная информация потребует пяти параметров, на один больше, чем мы привыкли думать.

Итак, мы пришли к довольно удивительным выводам. Хотя мы наблюдаем только три протяжённых пространственных измерения, рассуждения Калуцы и Клейна показывают, что это не исключает существования дополнительных, свёрнутых измерений, по крайней мере, если они достаточно малы. Вселенная вполне может иметь больше измерений, чем доступно нашему глазу.

Насколько малы должны быть эти измерения? Современная техника может обнаружить объекты, размер которых составляет одну миллиардную от одной миллиардной доли метра. Если дополнительное измерение свёрнуто до размера, который меньше этого значения, обнаружить его невозможно. В 1926 г. Клейн объединил первоначальное предположение Калуцы с некоторыми идеями бурно развивавшейся квантовой механики. Его расчёты показали, что дополнительное циклическое измерение по размерам сопоставимо с планковской длиной, что выходит далеко за рамки современных возможностей экспериментального изучения. С этого времени физики стали называть гипотезу о существовании дополнительных крошечных пространственных измерений теорией Калуцы — Клейна.[29]

Взад и вперёд по Садовому шлангу

Наглядный пример Садового шланга и иллюстрации, приведённые на рис. 8.3, призваны прояснить то, почему наша Вселенная может иметь дополнительные пространственные измерения. Но даже специалистам, ведущим исследования в этой области, трудно наглядно представить Вселенную, имеющую более трёх пространственных измерений. По этой причине физики, следуя примеру Эдвина Эббота{40}, опубликовавшего в 1884 г. увлекательную книгу «Флатляндия»[30], ставшую классикой популярного жанра, часто стремятся развить свои интуитивные представления о дополнительных измерениях, пытаясь представить, на что была бы похожа жизнь в воображаемой вселенной, имеющей меньшее число измерений, живя в которой мы постепенно осознаём, что она имеет больше измерений, чем прямо доступно нашему наблюдению. Попробуем вообразить двумерную вселенную, по форме напоминающую Садовый шланг. При этом мы должны отказаться рассматривать шланг с точки зрения «внешнего» наблюдателя как объект нашей Вселенной. Мы должны переместиться из нашего мира во вселенную Садового шланга, в которой поверхность очень длинного Садового шланга (вы можете считать его бесконечно длинным) являет собой всё пространство этой вселенной. Представьте себе, что вы крошечный муравей, живущий своей жизнью на этой поверхности.

Перейдём к ещё более экстремальной точке зрения. Представим, что длина циклического измерения во вселенной Садового шланга очень мала, настолько мала, что ни вы, ни ваши собратья-обитатели шланга даже не подозреваете о существовании этого измерения. Напротив, вы и все живущие во вселенной Садового шланга считаете бесспорно очевидным следующий фундаментальный факт вашей жизни — вселенная имеет одно пространственное измерение. (Если бы вселенная Садового шланга породила своего муравьиного Эйнштейна, обитатели шланга могли бы сказать, что их вселенная имеет одно пространственное и одно временное измерение.) В действительности этот факт кажется им настолько самоочевидным, что обитатели шланга называют место, где они проживают, Линляндией[31], подчёркивая тем самым, что оно имеет одно пространственное измерение.

Жизнь в Линляндии сильно отличается от той, к которой мы привыкли. Например, знакомые нам тела просто не могут поместиться в Линляндии. Сколько бы усилий вы ни прилагали, пытаясь изменить форму тела, вам ничего не удастся сделать с тем очевидным фактом, что у вас есть длина, ширина и высота, т. е. пространственная протяжённость в трёх измерениях. В Линляндии нет места для таких экстравагантных конструкций. Хотя ваш мысленный образ Линляндии может быть по-прежнему связан с длинным, похожим на нить объектом, существующим в нашем пространстве, вспомните, что вы должны думать о Линляндии как о вселенной — это и есть вселенная. Как обитатель Линляндии вы должны помещаться в ней. Попробуйте представить себе это. Даже если у вас будет тело муравья, вы не поместитесь в вашу вселенную. Вы должны сплющить ваше муравьиное тело, чтобы оно выглядело подобно телу червяка, а затем сдавливать его ещё и ещё, пока у него совсем не останется толщины. Чтобы жить в Линляндии, вы должны быть существом, у которого есть только длина.

Теперь представьте, что у вас есть по глазу на каждой стороне вашего тела. В отличие от глаз человека, которые могут вращаться в глазницах, чтобы иметь обзор в трёх измерениях, ваши глаза, глаза линляндца, навсегда зафиксированы в одном положении, каждый из них направлен вдоль единственного измерения. Это не является анатомическим ограничением вашего нового тела. Нет, вы и все другие линляндцы понимаете, что поскольку в Линляндии только одно измерение, здесь просто нет другого направления, в котором могли бы смотреть ваши глаза. Вперёд и назад — вот и все направления, которые существуют в Линляндии.

Мы можем попытаться дальше развивать наши представления о воображаемой жизни в Линляндии, но быстро осознаем, что она не слишком богата. Например, если по соседству с вами есть другой линляндец, представьте себе, как он будет выглядеть: вы увидите один его глаз, тот, который обращён к вам, но в отличие от глаза человека он будет выглядеть просто точкой. Глаза в Линляндии не имеют никаких индивидуальных особенностей и не выражают эмоций — для всего этого здесь просто нет места. Более того, вы навеки обречены видеть этот точечный глаз вашего соседа. Если вы захотите обойти его и исследовать ту часть Линляндии, которая лежит по другую сторону от его тела, вы будете очень разочарованы. Вы не сможете обойти его. Он полностью «загораживает дорогу», и в Линляндии нет места, чтобы обойти его. Последовательность расселения линляндцев после того, как они разместились по Линляндии, фиксирована и не может измениться. Такая вот тоска.

Несколько тысяч лет после пришествия бога в Линляндию, линляндец по имени Калуца К. Лин вселил некоторую надежду в сердца подавленных обитателей Линляндии. По божественному вдохновению или в полной тоске от многолетнего созерцания точечного глаза своего соседа он предположил, что Линляндия, в конце концов, может быть вовсе и не одномерной. Что, если, — теоретизировал он, — Линляндия на самом деле является двумерной, со вторым очень маленьким циклическим измерением, которое до сих пор не было открыто из-за его крошечного пространственного размера? Он продолжал рисовать картину совершенно новой жизни, которая начнётся, если только удастся увеличить в размере это свёрнутое измерение — возможность, которую нельзя было отрицать согласно недавним работам его коллеги Линштейна. Калуца К. Лин описал вселенную, которая поразила вас и ваших сотоварищей и наполнила ваши сердца надеждой — вселенную, в которой линляндцы могут свободно обходить один другого, используя второе измерение: они перестанут быть рабами пространства. Вы поняли, что Калуца К. Лин описывает жизнь в «утолщённой» вселенной Садового шланга.

1 ... 49 50 51 52 53 54 55 56 57 ... 116
Перейти на страницу:
Тут вы можете бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин.
Комментарии