Книга по химии для домашнего чтения - Борис Степин
Шрифт:
Интервал:
Закладка:
5.34. КАПРИЗНЫЙ ТИТАН
Титан Ti получают восстановлением тетрахлорида титана TiCl4 магнием Mg:
TiCl4 + 2Mg = Ti↓ + 2MgCl2.Образующийся титан очень пористый, напоминает губку. Если реакцию вели в атмосфере аргона, то получается пластичный и весьма химически активный металл, который реагирует с хлороводородной кислотой с выделением водорода H2 и образованием фиолетового раствора, содержащего трихлорид титана TiCl3:
2Ti + 6HCl = 2TiCl3 + 3Н2↑.Если в реактор вместе с аргоном попадает воздух, на поверхности металла образуется тонкий, но прочный слой нитрида титана TiNx и оксидов состава TiO2n-1, не поддающихся воздействию разбавленных кислот; такой титан еще и хрупок (см. 4.45).
5.35. ЧТО ТАКОЕ «ПЕВКАЯ МЕДЬ»?
«Певкая медь» на самом деле не медь, а бронза — сплав меди, олова и свинца. Такой сплав прочен, легкоплавок и текуч в жидком состоянии, а после отвердения — достаточно музыкален: из него отливали колокола. Содержание меди в колокольной бронзе 75–78%, олова 20–21%, свинца 2–3%. Иногда в расплав для звонкости добавляли и серебро.
5.36. КАКУЮ БОЛЕЗНЬ НАЗЫВАЮТ «ОЛОВЯННОЙ ЧУМОЙ»?
«Оловянная чума» — это не болезнь, а своеобразное явление, связанное с существованием двух аллотропных модификаций олова. У «серого олова» («модификация) кристаллическая структура сходна со структурой алмаза и устойчива ниже 13,2° С. «Белое олово» (β-модификация) имеет тетрагональную структуру. C этим оловом мы обычно имеем дело. При температуре 13,2° C обе модификации находятся в равновесии, а на сильном морозе β-модификация переходит в α-модификацию. Поскольку плотность и кристаллическая структура модификаций разные, оловянные изделия разрушаются. Остановить начавшийся процесс невозможно, поэтому его и назвали «оловянной чумой». Правда, этот процесс на слабом морозе идет медленно. Он быстро нарастает только при температуре ниже — 25° C и достигает максимальной скорости при — 48° C (см. 9.22).
5.37. ЕГИПЕТСКИЙ ГОРШОК
Как выплавляли золото в Древнем Египте?
Производство металлов, а особенно золота Au, в Древнем Египте считалось священным искусством, а металлургические знания были покрыты тайной. Много лет спустя выяснилось, что египтяне обрабатывали золотую руду расправленным свинцом Pb, растворяющим благородные металлы, и таким образом извлекали остатки золота (а заодно и серебра) из руд. Затем расплав подвергали окислительному обжигу в горшках, свинец переходил в оксид PbO. Главный технологический секрет этого обжига — материал горшков: их делали из костной золы. При плавке PbO впитывается в стенки горшка, увлекая с собой случайные примеси, а на дне остается очищенный сплав золота и серебра (см. 1–56; 10.9–10.13).
5.38. ИНДИКАТОР СЕРЕБРА
Для распознавания серебра на поверхность изделия наносят каплю слабого раствора дихромата калия в серной кислоте.
Серебро Ag — металл благородный, поэтому взаимодействия его при контакте с разбавленными кислотами не происходит. Иное дело, если в кислоте присутствует сильный окислитель — дихромат калия K2Cr2O7. В этом случае серебро переходит в нерастворимый дихромат серебра Ag2Cr2O7 ярко-красного цвета, по которому и распознают наличие в сплаве серебра:
6Ag + 7H2SO4 + 4K2Cr2O7 = 3Ag2Cr2O7↓ + Cr2(SO4)3 + 4K2SO4 + 7Н2O.Если серебра в сплаве меньше 25%, то дихромат серебра не образуется. Проба очень чувствительна и практически не портит изделия из исследуемого сплава, иногда, правда, остается светлое пятнышко там, где наносили каплю раствора.
5.39. ЗАГАДКА О ЦАРЕ МЕТАЛЛОВ
Два оксида реагируют между собой, и при этом получаются две кислоты, одна ~ сильная, другая — слабая, к тому же неустойчивая, при разложении превращающаяся в первую. Сильная кислота, если ее посолить, растворяет царя металлов. Какие оксиды вступили в реакцию?
Прежде всего определим, какой металл — «царь металлов». Это, безусловно, золото; растворить его можно в «царской водке» (см. 3.13) — смеси концентрированных азотной и хлороводородной (соляной) кислот [именно такая смесь получится, если посолить — добавить хлорид натрия NaCl (поваренную соль) — концентрированную азотную кислоту HNO3]. Оксиды, о которых шла речь вначале, — это диоксид азота NO2 и вода H2O (оксид диводорода). Их взаимодействие и дает смесь сильной HNO3 и слабой HNO2 кислот:
2NO2 + H2O = HNO3 + HNO2.Слабая азотистая кислота постепенно разлагается с выделением монооксида азота NO, превращаясь в HNO3:
3HNO2 = HNO3 + 2NO↑ + H2O.При добавлении хлорида натрия к HNO3 протекает реакция
HNO3 + NaCl ↔ HCl + NaNO3.Золото взаимодействует с полученной смесью кислот с образованием тетрахлороаурата водорода:
Au + HNO3 + 4HCl = H[AuCl4] + NO↑ + 2Н2О.5.40. ГДЕ ПРЕДЕЛЫ БЛАГОРОДСТВА ЗОЛОТА?
Золото может по праву гордиться своим упорным химическим характером (см. 10.9–10.13). Известно очень мало химических веществ, с которыми оно желает взаимодействовать. Прежде всего это смесь концентрированных азотной HNO3 и хлороводородной HCl кислот (см. 5.39), водный раствор цианида калия KCN (см. 6.3), раствор хлора Cl2 в хлороводородной кислоте, расплав селеновой кислоты H2SeO4 и водный раствор смеси иодида калия KI и дииодоиодата калия К[I(I)2]. Последние две реакции протекают так:
2Au + 6H2SeO4 = Au2(SeO4)3 + 3SeO2 + 6Н2O, 2Au + K[I(I)2] + KI = 2K[AuI2].В первой реакции золото превращается в селенат золота Au2(SeO4)3, а часть селеновой кислоты восстанавливается до диоксида селена SeO2. Во второй реакции образуется дииодоаурат калия. Эту реакцию используют для извлечения золота из бедных по его содержанию руд.
5.41. ХРУПКОЕ ЗОЛОТО
Золото, содержащее всего 1% примеси свинца, при ударе разлетится на куски. Даже при содержании свинца 0,01% золото уже теряет свою замечательную ковкость.
5.42. СЕРЕБРЯНЫЙ ЛЕС
Вы добавили к капле ртути, находящейся под водой, водный раствор нитрата серебра и с удивлением обнаружили, что поверхность ртути словно ожила. На ней появились сверкающие ростки, которые начали ветвиться и постепенно превратились в сверкающие деревца.
В сосуде протекала реакция вытеснения серебра Ag из его нитрата AgNO3 ртутью Hg:
2AgNO3 + Hg = 2Ag↓ + Hg(NO3)2.Выделяющееся серебро образует на капле ртути нитевидные кристаллы. Причина протекающей реакции заключается в том, что серебро — менее активный металл, чем ртуть, поэтому ртуть восстанавливает серебро из растворов его солей в виде металла.
5.43. КАК БЬЕТСЯ «РТУТНОЕ СЕРДЦЕ»?
Если каплю ртути поместить на часовое стекло в водный раствор серной кислоты H2SO4, содержащий небольшое количество дихромата калия K2Cr2O7, а потом прикоснуться к поверхности ртутной капли иголкой, то капля ртути начнет пульсировать, попеременно прикасаясь к иголке и отходя от нее, принимая то сферическую, то плоскую форму. Такая пульсация может длиться долго; при этом кажется, что капля ртути напоминает живое сердце.
На границе ртуть — раствор серной кислоты образуется своеобразный микроконденсатор — двойной электрический слой, состоящий из ионов. Поверхность ртути получает электрический заряд, который придает капле более плоскую форму из-за взаимного отталкивания одноименно заряженных частиц. Прикосновение острия иглы снимает этот заряд, и капля становится сферической, отдаляясь при этом от острия иглы. Затем капля ртути снова приобретает заряд и, растекаясь, прикасается к игле. Заряд «стекает», капля принимает сферическую форму, и процесс снова повторяется.
5.44. МАСТЕР АМАЛЬГАМА
Маленькая девочка решила подновить мамин латунный наперсток и намазала его ртутью из недавно разбитого термометра. Чудеса! Старый наперсток заблестел как серебряный! Но недолго пришлось им пользоваться: ровно через неделю наперсток разломился на две половинки.
На поверхности латуни образовалась амальгама, и это привело к потере прочности металла. Что же такое «амальгама»?
Способность жидкой ртути Hg растворять другие металлы и образовывать сплавы — амальгамы — поражала воображение алхимиков и заставляла их делать фантастические выводы о свойствах этого вещества (см. 4.3). Особенно этому способствовало то, что при образовании амальгамы даже желтые и красные металлы (например, медь Cu) приобретают серебристо-белый блеск. Как правило, амальгамы — это просто растворы других металлов в ртути, жидкие или твердые, но они иногда содержат и соединения металлов с ртутью строго определенного состава и с определенными свойствами. Не образуют амальгам только металлы, которые не смачиваются ртутью, — кобальт Co, марганец Mn, никель Ni, молибден Mo, рений Re и некоторые другие. Не существует и амальгамы железа Fe — поэтому ртуть можно перевозить в железных цистернах. Амальгамы были известны давно: так, зеркала в старину делали, покрывая стекло амальгамой олова Sn (см. 1.27); золото издавна извлекали из бедных руд, обрабатывая их жидкой ртутью (см. 10.13). Полученную амальгаму золота разлагали, испаряя ртуть, причем все растворенное золото оставалось в виде мельчайших кристалликов. Из амальгам серебра и меди делали зубные пломбы: амальгама серебра химически инертна и в обычных условиях является твердым веществом, но легко размягчается при нагревании.