Невидимая Вселенная. Темные секреты космоса - Йостейн Рисер Кристиансен
Шрифт:
Интервал:
Закладка:
Когда мы использовали сверхновые для выяснения истории Вселенной, то предполагали, что она по большому счету везде одинаковая. Мы предположили, что далекие сверхновые находятся в той части Вселенной, которая не отличается от нашей. Мы обнаружили, что в местах взрыва сверхновых расширение Вселенной происходило быстрее, чем сейчас около нас. Согласно нашим предположениям, различные скорости расширения обусловлены различием эпох. Но не связано ли видимое ускорение с тем, что мы смотрели на Вселенную в разных местах? И что отдаленные ее места ведут себя иначе, чем близкие?
Наблюдения за скоплениями галактик говорят о том, что Вселенная выглядит примерно одинаково во всех направлениях.
Но это совсем не значит, что Вселенная одинакова повсюду. Например, мы можем представить Землю в центре огромной пузыреобразной структуры во Вселенной. Около нас материя заполняет пространство не так плотно, но, если двигаться к границам пузыря, плотность материи увеличится. Из центра пузыря, где мы находимся, Вселенная может показаться одинаковой во всех направлениях. Но видимость обманчива.
В 2006 году трое норвежских исследователей — Ховард Ал- нес, Морад Амарцгиуи и Эйвинд Грён — опубликовали захватывающую статью. В ней они проанализировали наблюдения за вспышками сверхновых, исходя из предположения о том, что мы находимся в центре своеобразного пузыря, в котором плотность ниже, чем снаружи. В статье им удалось объяснить наблюдения, не прибегая к темной энергии и ускоренному расширению Вселенной. Как мы помним, чем больше материи, создающей гравитацию, тем сильнее замедляется расширение Вселенной. В неоднородной Вселенной в различных местах возможны различные скорости расширения. В местах большего скопления материи расширение медленнее, чем в более разреженных. Тогда если мы окажемся в центре менее плотного пузыря и посмотрим наружу, то с перемещением в пространстве и времени увидим все более плотные части Вселенной. Чем более далекие сверхновые мы видим, тем плотнее Вселенная и тем медленнее она будет расширяться. Чем ближе к нам сверхновые во времени и пространстве, тем быстрее расширяется Вселенная. То, что мы ранее интерпретировали как ускоренное расширение Вселенной, в этой модели объясняется тем фактом, что мы находимся в определенном месте во Вселенной.
Модель интересна и вполне привлекательна, ведь она способна описать наши наблюдения без привлечения новой неизвестной сущности. Тем не менее у нее не так уж и много последователей, да и сами авторы статьи больше склонны к идее темной энергии. Все дело в том, что модель пузыря создает кучу серьезных проблем. И хотя космический пузырь неплохо согласуется с наблюдениями сверхновых, у него возникают большие проблемы, когда дело доходит до реликтового излучения. Модель также не в силах объяснить наблюдения интегрального эффекта Сакса — Вульфа (эффект исчезнувшего горнолыжного склона). Еще одна проблема заключается в том, что модель размещает нас в весьма особом месте — ровно в середине огромного пузыря. Те же ученые исследовали в более поздней статье, насколько близко мы должны быть к центру пузыря, чтобы наблюдения соответствовали модели. Оказалось, что при перемещении в случайное место внутри космического пузыря вероятность оказаться настолько близко к центру, чтобы результаты наблюдений были верными, составляет всего один к миллиону. Таким образом, для того чтобы считать модель состоятельной, необходимо очень точное совпадение факторов, и трудно представить себе причину, которая приведет нас в самую сердцевину такого пузыря.
Несмотря на проблемы, у этой модели имеется мораль: выдвигая гипотезы, следует мыслить трезво. Вывод об ускоряющемся расширении Вселенной основан на предположении, что Вселенная везде одинакова. И хоть это и кажется вполне разумным, альтернативные варианты исключать нельзя.
3.5. Участь Вселенной
А что произойдет с нашей Вселенной в будущем? Будет ли она существовать вечно? Ответы на эти вопросы зависят от природы темной энергии. Давайте рассмотрим три различных сценария: вечное расширение, Большой хлопок вследствие коллапса или же Большой разрыв и гибель Вселенной.
Вечное расширениеЭтот сценарий, пожалуй, наиболее вероятен и осуществится, если темная энергия окажется космологической постоянной. Как вы помните, по мере расширения Вселенной темная энергия начинает преобладать, а скорость расширения увеличивается.
И как же Вселенная будет выглядеть в долгосрочной перспективе? Структуры, которые сейчас крепко связаны гравитацией, например планетные системы, галактики и скопления галактик, так и останутся рядом. Но расстояние между скоплениями галактик значительно увеличится. Примерно где-то через 100 миллиардов лет — впрочем, все зависит от природы темной материи — объекты за пределами нашего Местного скопления галактик увидеть будет уже невозможно. По нашим оценкам, у Солнца закончится энергия и оно умрет примерно через пять миллиардов лет, поэтому Земля в любом случае станет непригодной для жизни задолго до того, как скопления галактик исчезнут из нашего поля зрения.
Для излучения света звездам необходимы легкие химические элементы, которые будут «сгорать» в термоядерных реакциях. Примерно через 1014 (сто тысяч миллиардов) лет все звездное топливо во Вселенной будет израсходовано. Последние звезды погаснут, и Вселенная станет темной. Эта темная Вселенная продолжит свое вечное расширение.
Коллапс — Большой хлопокБольшой хлопок, или Большое сжатие, — это Большой взрыв наоборот. Вселенная начнет сжиматься и в конце концов скол- лапсирует. Этот сценарий был популярен до открытия ускоренного расширения в 1990-х годах.
В мире без темной энергии судьба Вселенной зависела бы от количества материи. Если материя достаточно плотная, то гравитация начнет замедлять расширение до тех пор, пока оно не остановится.
Тоща Вселенная начнет сжиматься, и закончится все это Большим хлопком. Если плотность материи недостаточна, то гравитационные силы никогда не смогут остановить расширение. Да, Вселенная будет расширяться все медленнее, но никогда уже не начнет сжиматься.
Ранее мы рассматривали искривление пространства. Кривизна Вселенной определяется плотностью находящегося в ней «вещества». Я уже упоминал «критическую плотност ь» — эта величина описывает, насколько плотной должна быть материя, чтобы Вселенная была плоской. Плотность меньше критической приведет