Этот «цифровой» физический мир - Андрей Гришаев
Шрифт:
Интервал:
Закладка:
Этот очевидный факт причинял релятивистам немало душевных страданий. Пришлось принимать меры: придумывать гипотезы, которые наукообразно разъясняли – отчего у пропорциональных счётчиков, при измерениях в релятивистской области, увеличиваются аппаратурные погрешности [Д2]. Да ведь как согласованно увеличиваются – в точности маскируя релятивистский рост, как будто его и нет вовсе! Знаете, дорогой читатель, физики обычно не упускают возможности позубоскалить над гипотезами ad hoc – так называются вспомогательные гипотезы, выдвинутые ради только какого-то одного трудно объяснимого случая. Так вот, для разных типов и конструкций пропорциональных счётчиков, «увеличение аппаратурных погрешностей» пришлось объяснять по-разному, так что гипотез ad hoc здесь набрался целый букет. И никто не зубоскалил. Все, похоже, понимали: грешно смеяться над больными.
А страдать релятивистов заставляли не только пропорциональные счётчики. Была ещё одна методика прямого измерения тормозных потерь быстрых заряженных частиц – в фотоэмульсиях. Здесь частица тоже теряет энергию на ионизацию атомов, причём каждый образовавшийся ион становится центром формирования фотографического зёрнышка. И эти зёрнышки различимы под микроскопом. Значит, число ионизаций, произведённых частицей, можно пересчитать, а затем умножить это число на энергию одной ионизации – вот и получится исходная энергия частицы! И что же? А то, что и здесь всё получалось, как и в пропорциональных счётчиках. В «нерелятивистской области», число зёрнышек, умноженное на энергию одной ионизации, вполне соответствовало результатам «магнитной» методики. А в «релятивисткой области» число зёрнышек выходило на постоянную величину и дальше, практически, не росло [Б2]. И, опять же, использовались различные составы фотоэмульсий. И опять же, все они говорили одно и то же: если подходить к вопросу методом простого всматривания, то никакого релятивистского роста энергии не обнаруживается. И опять пришлось выдвигать гипотезы ad hoc. Насчёт того, что быстрая частица теряет энергию в фотоэмульсиях не только на ионизацию: есть, якобы, ещё и «недетектируемые» потери энергии – на возбуждение атомов или ядер, на выбивание нейтральных частиц, на излучение [Б2]. Пикантность ситуации в том, что эффективности разных каналов этих «недетектируемых потерь» по-разному зависят от энергии частицы – но в сумме эти потери, якобы, так согласованно нарастают, что в точности маскируют ожидаемый релятивистский рост детектируемых потерь!
Не проще и не разумнее ли допустить, что, в релятивистской области, потери не растут просто потому, что истинная кинетическая энергия частицы имеет верхний предел? Нет, этот вопрос не решается по критериям простоты и разумности. Тут дело на принцип пошло! И, чтобы релятивистам не утруждать себя каждый раз объяснениями того, куда же деваются релятивистские излишки энергии частицы, они пустились на небывалый в истории физики прецедент. «Магнитная методика, - заявили они, - непогрешима! Поэтому все остальные методики измерения энергии следует калибровать именно по ней, по магнитной!» После этого им, действительно, полегче стало.
Кстати, были ведь эксперименты, где «магнитная» и «немагнитная» методики встречались, так сказать, нос к носу. Это получалось там, где измеряли импульс отдачи у атома, из ядра которого выстреливался релятивистский электрон при бета-распаде. Здесь устраивалась «очная ставка» двум методикам: импульс отдачи атома измерялся по «немагнитной» методике, а импульс выстреливаемого электрона – по «магнитной», во всей её непогрешимой мощи. Первые же опыты такого рода [К5] поставили в крайне затруднительное положение учёных, стоявших на позициях закона сохранения релятивистского импульса. Ведь импульс электрона получался чудовищно больше, чем импульс отдачи атома. Следите за логикой: импульс электрона измерялся по непогрешимой методике – значит, правильно измерялся именно он. Следовательно, импульс отдачи у атома оказывался чудовищно меньше, чем требовалось по закону сохранения релятивистского импульса. Т.е., подавляющая часть импульса отдачи куда-то тихо исчезала. Экспериментаторы клялись и божились, что это не их рук дело – а теоретики не могли в это поверить... «Пялились исследователи на фотопластинки, вертели ими так и сяк… Можно было поступить совсем просто: отбросить иллюзорные релятивистские завышения импульсов у электронов, и тогда их результирующие импульсы становились бы равными импульсам отдачи! Но – что вы! это было бы святотатство! Уж лучше было сидеть и страдать молча… Ферми смотрел-смотрел на эти страдания, и его доброе сердце дрогнуло. «Ладно, - подмигнул он, - вы только не плачьте! Вот что мы сделаем: введём новую частицу. И припишем ей всё, что требуется. Вам нужен импульс? – у ней он есть!» - «Как?! – просияли от радости экспериментаторы. – Так просто? Впрочем, погодите-погодите. Мы же такую возможность исследовали. Никаких следов третьей частицы при бета-распаде не обнаруживается!» - «Ну, и что такого? Если следов не обнаруживается, значит, эта частица их не оставляет! Я же говорю – припишем всё, что требуется!» - «Да, но… странно как-то. Трудно поверить! Частица… импульс имеет… и – никаких следов… Как же её поймать?» - «А зачем обязательно – поймать? Сам по себе процесс ловли – разве он удовольствия не доставляет? Так ловите, до скончания века, и наслаждайтесь! На зависть окружающим!» - «А, ведь, действительно! Позвольте полюбопытствовать, а как предлагается назвать эту неуловимую прелесть?» - «Да придумаем хохмочку какую-нибудь… Вот: назовём эту прелесть нейтрончиком!» [Д4] Уж простите за приведённую цитаточку, но так и было: нейтрино «открыли» только для того, чтобы не рухнул закон сохранения релятивистского импульса. А чтобы успокоить тех, кто сомневался в реальности нейтрино, ей быстренько приписали статус одной из фундаментальных, абсолютно стабильных, частиц – которых, как считается, всего-то четыре. В физике организовали новый раздел – «Физика нейтрино». Понастроили грандиозных «детекторов». Мне довелось побывать на одном из них – в Баксанском ущелье на Кавказе. Чтобы только нейтрино, с их выдающимися проникающими способностями, могли долетать до этого «детектора», помещение для него выдолблено в центре подошвы огромной каменной горы: эта гора прикрывает «детектор» сверху... Так, думаете, эти детекторы реагируют на нейтрино? Да нет, они реагируют на продукты реакций, которые, как полагают теоретики, могут порождать только нейтрино – да и то крайне редко. Уж больно оно неуловимое. Кстати, по свойству исключительно слабо взаимодействовать с веществом, нейтрино резко отличается от остальных частиц, испускаемых при радиоактивных превращениях: нейтрино «умирает» на много порядков реже, чем рождается. Налицо абсурдная асимметрия, которая до сих пор не имеет объяснения. Не проще ли устранить эту асимметрию, признав, что нейтрино и релятивистский импульс являются теоретическими иллюзиями?
Но нам могли бы ещё возразить: если релятивистские излишки энергии были бы иллюзиями, то это непременно проявилось бы при сопоставлении энергии частиц с энергиями гамма-квантов, которые измеряются независимыми способами. Увы – хотя арсенал способов измерения энергии гамма-квантов довольно-таки богат [Э2], об их независимости не может быть и речи. Целый ряд методов основан на измерениях энергий конверсионных электронов и вторичных электронов, которые выстреливаются в результате комптон-эффекта, фотоэффекта, и образования электрон-позитронных пар – но «магнитный анализ спектров вторичных электронов… является наилучшим методом точного измерения энергии γ-квантов» [Э2]. По результатам этого знакомого «наилучшего метода» калибруются остальные методы – в которых определяются пороги ядерных реакций или энергии вторичных ядерных частиц, а также такой, казалось бы, обособленный метод, как измерение длины волны гамма-излучения с помощью дифракции на кристалле [М1]. Этот метод сохраняет свою обособленность, опять же, лишь при малых энергиях гамма-квантов. Но, уже при энергиях ~0.1 МэВ, соответствующая длина волны гамма-излучения на порядок меньше, чем расстояния между атомными плоскостями в кристаллах, что весьма затрудняет – особенно при скользящих углах падения – определение индекса брэгговской дифракции; так что калибровка здесь необходима. Выходит следующее: если, как мы полагаем, метод магнитного отклонения даёт не истинную, а релятивистски завышенную энергию, то с аналогичным завышением определяются и энергии гамма-квантов!
Впрочем, здесь можно было до некоторой степени избегать больших завышений, если при калибровке методом магнитного отклонения использовать частицы с достаточно большой массой – поскольку энергия, которая, согласно (4.4.2), близка к предельной у электрона, далека от предела у протона. Отсюда, кстати, вытекает возможность получения ещё одного свидетельства о наличии ограничения у кинетической энергии частицы. Известно множество ядерных реакций с порогами всего в несколько МэВ [Б2]. Эти реакции инициируются, например, протонами, для которых энергия в несколько МэВ является ничтожной, и есть гарантия, что пороги при этом измеряются без релятивистского завышения. Эти же реакции инициируются и нейтронами, и гамма-квантами – была бы их энергия выше пороговой. Электроны, которые имели бы энергию в несколько МэВ, инициировали бы эти реакции, казалось бы, ещё охотнее, чем протоны – ведь электроны притягиваются к ядру, а не отталкиваются от него. Но нет: что-то мешает электронам инициировать ядерные реакции. Считается, что релятивистские электроны, при взаимодействии с ядрами, испытывают почему-то лишь упругое рассеяние [К4]. Налицо странная асимметрия: вылететь из ядра, прихватив оттуда немалую энергию, электрон может (при бета-распаде) – а ударить по ядру, сообщив ему такую же энергию, электрон не может! Что по этому поводу говорит физика высоких энергий? А она по этому поводу хранит гробовое молчание. Высокие энергии оказалось гораздо практичнее измерять не по электронной, а по протонной шкале. Тут уж не до единства измерений – быть бы живу! Ибо из опыта ясно, что, скажем, 3 МэВа у протона – это полноценные 3 МэВа, а 3 МэВа у электрона – это пустышка.