Эмбрионы, гены и эволюция - Рудольф Рэфф
Шрифт:
Интервал:
Закладка:
Рис. 5-7. Морфогенез зуба у млекопитающих. А. Слой эпителиальных клеток зубной пластинки, лежащий над оральной мезенхимой. Б. Эпителиальные клетки под влиянием индукционного сигнала со стороны мезенхимы наводняют последнюю. В. Зубная пластинка, индуцированная к образованию эмалевого органа, в свою очередь индуцирует дифференцировку мезенхимы в одонтобласты. Г. Формирование зуба в результате отложения дентина мезенхимными одонтобластами и эмали - эпителиальными одонтобластами.
У птиц в результате обычного взаимодействия между оральной мезенхимой и эпидермисом образуется клюв, а не зубы. Хаяши (Hayashi), используя гетероспецифичные комбинации оральных тканей курицы и утки, показал, что характер клюва определяется видовой принадлежностью мезенхимы. Так, при комбинации эпителия куриного зародыша с мезенхимой зародыша утки развивался клюв с характерными для утки зубчиками. Аналогичным образом Коллар и Байрд (Kollar, Baird) обнаружили, что оральный эпителий мыши поддается влиянию той мезенхимы, с которой он выращивается.
Наиболее показательный «эволюционный» эксперимент состоит в комбинации орального эпителия птицы с оральной мезенхимой млекопитающего. Коллар и Фишер (Fischer) провели этот эксперимент, выращивая кусочки глоточного эпителия курицы с молярной мезенхимой мыши. Обе ткани выращивали в передних камерах глаза половозрелых мышей, принадлежащих к особой генетической линии («голые» мыши), которые служат пусть несколько необычной, но подходящей культуральной средой. Против ожидания оральный эпителий курицы реагировал на оральную мезенхиму мыши, образуя структуры, похожие на эмалевые органы. В нескольких случаях, один из которых изображен на рис. 5-8, из этих кусочков развились настоящие зубы. Таким образом, в геноме по крайней мере одного вида птиц все еще сохраняется генетическая информация, дающая возможность оральному эпителию курицы успешно участвовать в последовательных взаимодействиях, необходимых для морфогенеза зубов и синтеза эмали. Поэтому утрату зубов у птиц можно рассматривать как результат изменения программы развития их мезенхимы, которое привело к выпадению начальных стадий этого процесса.
Рис. 5-8. Гибридный зуб, образовавшийся в результате совместного выращивания орального эпителия куриного зародыша и дентальной мезенхимы мышиного. А. Оральный эпителий куриного зародыша, образующий примитивный эмалевый орган, в котором находится мезенхима мышиного зародыша. Б. Хорошо развитый гибридный зуб (Kollar, Fisher, 1980).
Редукция малой берцовой кости у птиц также произошла в результате изменения программы развития, а не утраты генетической информации, необходимой для формирования этой кости. У археоптерикса имелась полностью развитая малая берцовая кость с суставными поверхностями на обоих концах; в отличие от этого у современных птиц (рис. 5-9) малая берцовая кость представляет собой всего лишь костный отросток, лежащий вдоль большой берцовой кости и приросший к ней. Исчерпывающее исследование взаимоотношений между костями ноги у куриного зародыша в процессе развития провел А. Ампэ (А. Hampe). Ампэ поставил ряд экспериментов, в которых различные участки развивающейся почки конечности были помечены введенными в них частичками угля. Местоположение этих меток в развитой конечности позволило Ампэ составить карту проспективных областей почки конечности (рис. 5-9). Главные такие области соответствуют скоплениям мезенхимных клеток, предназначенных для образования бедренной, большой и малой берцовых, плюсневых и предплюсневых костей. Ампэ проделал три типа экспериментов, убедившие его в том, что редуцированные размеры малой берцовой кости у современных птиц представляют собой результат захвата клеток, относящихся к проспективной области малой берцовой кости, проспективной областью большой берцовой кости.
Рис. 5-9. Атавизм, проявляющийся в развитии ноги у курицы при экспериментальной модификации проспективной области костной ткани в почке конечности. А. Нормальная нога курицы. Б. Введение чешуйки слюды в почку конечности, между проспективными областями малой (I) и большой (II) берцовых костей и образующаяся в результате этого нога с увеличенной малой берцовой костью, несущей на дистальном конце суставную поверхность. В. Проявление атавизма в строении ноги курицы. Г. Нижняя конечность археоптерикса. III - fibulare; IV - tibiale; V - цевка; VI - плюсна (Hampe, 1959, 1960).
Первый из экспериментов, проведенных Ампэ, состоял в удалении или добавлении мезенхимных клеток к почке конечности. При удалении клеток из обеих берцовых костей конкуренция между ними усиливалась и малая берцовая кость не развивалась вовсе. Если же к почке конечности добавляли мезенхимные клетки, то большая берцовая кость не изменялась, а малая берцовая достигала одинаковых с нею размеров. Конкуренцию можно было подавить и другим способом: поворот проспективной области большой берцовой кости на 90° приводил к росту большой и малой берцовых костей в разных направлениях, так что конкуренция между ними становилась невозможной. В этом случае опять-таки малая берцовая достигала полной длины. Эти эксперименты ясно выявили конкуренцию между проспективными областями двух берцовых костей; однако наиболее яркие и интересные сведения об участвующих в этом эволюционных изменениях дал третий эксперимент.
Ампэ осторожно помещал между двумя проспективными участками почки конечности маленький кусочек слюды, который препятствовал проникновению презумптивных клеток малой берцовой кости в область большой берцовой. Полученный при этом неожиданный результат изображен на рис. 5-9: у сформировавшейся конечности малая берцовая не только достигала «полной длины», но и несла на своем дистальном конце суставную поверхность. Форма малой берцовой и ее взаимодействие с двумя маленькими предплюсневыми косточками, tibiale и fibulare, были очень близки к гомологичным структурам ноги археоптерикса. У взрослой курицы эти две косточки полностью срастаются с голенью. Разделение проспективных областей большой и малой берцовых костей, произведенное Ампэ, привело не только к образованию более длинной малой берцовой, но и к восстановлению древнего типа развития, который в течение долгого времени оставался подавленным. Гены, определявшие форму ноги у археоптерикса, все еще сохраняются у курицы, но в результате модификаций морфогенетических взаимодействий эти гены утратили возможность экспрессироваться, во всяком случае таким образом, как прежде.
Примеры регуляторных изменений, связанных с утратой зубов и редукцией малой берцовой кости у птиц, дают представление о тех способах, которыми регуляторные механизмы, оказывающие влияние на клеточные взаимодействия, могут вызывать эволюционные изменения морфологии. Однако оба этих примера имеют один недостаток: как в одном, так и в другом из них происходит редукция структуры. Если бы эволюция стремилась к своего рода морфологической нирване, это было бы превосходно, но морфологическая эволюция влечет за собой также модификации структур, а иногда и появление новых структур. К сожалению, случаи, когда эволюция приводит к утрате структур (как в двух уже рассмотренных примерах, а также в других, таких как утрата глаз у мексиканской пещерной рыбы, которую изучали Кан (Cahn) и Садоглу (Sadoglu), показавшие обусловленную генетически редукцию способности сетчатки индуцировать развитие у этих рыб хрусталика, легче поддаются экспериментальному анализу, чем случаи приобретения структур или их модификации. Эффектные превращения покровов, происходившие у рептилий, птиц и млекопитающих, повлекли за собой сложные изменения в системах регуляторных генов, и морфогенетические процессы, лежащие в основе развития чешуи, перьев и волос, требуют изучения. Хотя регуляция морфогенеза в этих системах все еще мало понятна, в общих чертах эволюционные изменения соответствующих регуляторных систем начинают выявляться благодаря работам П. Сенджела (Sengel) и его сотрудников, в особенности Дхуайи (Dhouailly).
Кожа состоит из двух слоев: верхнего - эпидермиса, происходящего из эктодермы зародыша, и лежащего под ним слоя дермы, происходящей из мезодермы. Развитие чешуи или других эпидермальных структур зависит от индукционных сигналов, исходящих от дермы.
Предполагается, что перья и волосы возникли в процессе эволюции из чешуи рептилий. Все эти структуры состоят из белков, принадлежащих к одному семейству кератинов. На тесную гомологию между чешуями и перьями указывает наблюдаемое иногда превращение кончиков чешуи, покрывающих ноги птиц, в перья.
Утиные перья сильно отличаются по своей морфологии от куриных. Сенджел и его сотрудники исследовали источник морфогенетической информации, необходимой для развития перьев, комбинируя зачатки дермы и эпидермиса, взятые от разных видов. Оказалось, что морфогенез пера детерминируется дермой. Общая архитектоника перьев, их размеры и число бородок соответствовали тому виду, от которого была взята дерма. Только форму клеток крючочков детерминировал эпидермис. Дерма детерминировала также характер распределения перьев. Как показали дальнейшие эксперименты с куриными зародышами, в которых дерму комбинировали с эпидермисом из области спины, дающим начало перьям, и с эпидермисом из области цевки, дающим начало характерным большим чешуям, такого рода детерминирующая роль дермы в морфогенезе широко распространена. Будет ли эпидермис детерминирован к образованию зачатков перьев или крупных чешуи, всегда зависело от типа морфогенеза, характерного для того участка зародыша, из которого брали дерму. Так, например, дорсальный эпидермис, обычно образующий перья, при комбинации с дермой из области цевки давал крупные чешуи.