Категории
Самые читаемые
PochitayKnigi » Компьютеры и Интернет » Программное обеспечение » Linux программирование в примерах - Арнольд Роббинс

Linux программирование в примерах - Арнольд Роббинс

Читать онлайн Linux программирование в примерах - Арнольд Роббинс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 52 53 54 55 56 57 58 59 60 ... 165
Перейти на страницу:

391   else if (cflg)

392    rep->lmtime = statb.st_ctime;

393   else

394    rep->lmtime = statb.st_mtime;

395   tblocks += nblock(statb.st_size);

396  }

397  return(rep);

398 }

Строки 356–396 обрабатывают вызов stat(). Если это аргумент командной строки или если statreq установлен в true благодаря опции, код заполняет struct lbuf следующим образом:

• Строки 357–366: вызывают stat(), при ее неудаче выводится сообщение об ошибке с установкой соответствующих значений, затем возвращается NULL (выраженный в виде 0).

• Строки 367–368: устанавливают в struct stat поля номера индекса и размера, если вызов stat() был успешным.

• Строки 369–384: обрабатывают особые случаи каталогов, блочных и символьных устройств. Во всех случаях код обновляет поле ltype. Для устройств значение lsize замещается значением st_rdev.

• Строки 385–388. заполняются поля lflags, luid, lgid и lnl из соответствующих полей в struct stat. Строка 385 удаляет биты типа файла, оставляя 12 битов прав доступа (на чтение/запись/исполнение для владельца/группы/остальных, а также setuid, setgid и save-text).

• Строки 389–394: основываясь на опциях командной строки, используют одно из трех полей времени в struct stat для поля lmtime в struct lbuf.

• Строка 395: обновляет глобальную переменную tblocks числом блоков в файле.

400 compar(pp1, pp2) /* int compar(struct lbuf **pp1, */

401 struct lbuf **pp1, **pp2; /* struct lbuf **pp2) */

402 {

403  register struct lbuf *p1, *p2;

404

405  p1 = *pp1;

406  p2 = *pp2;

407  if (dflg==0) {

408   if (p1->lflags&ISARG && p1->ltype=='d') {

409    if (!(p2->lflags&ISARG && p2->ltype=='d'))

410     return(1);

411   } else {

412    if (p2->lflags&ISARG && p2->ltype=='d')

413     return(-1);

414   }

415  }

416  if (tflg) {

417   if(p2->lmtime == p1->lmtime)

418    return(0);

419   if (p2->lmtime > p1->lmtime)

420    return(rflg);

421   return(-rflg);

422  }

423  return(rflg * strcmp(p1->lflags&ISARG ? p1->ln.namep : p1->ln.lname,

424   p2->lflags&ISARG ? p2->ln.namep : p2->ln.lname));

425 }

Функция compar() сжата: в небольшом пространстве происходит многое. Первая вещь, которую следует запомнить, это смысл возвращаемого значения: отрицательное значение означает, что первый файл должен идти перед вторым, ноль означает, что файлы равны, а положительное значение означает, что второй файл должен идти перед первым

Следующая вещь, которую нужно понять, это то, что ls выводит содержимое каталогов после выведения сведений о файлах. Поэтому результат сортировки должен быть таким, чтобы все каталоги, указанные в командной строке, следовали за всеми файлами, указанными там же

Наконец, переменная rflg помогает реализовать опцию -r, которая меняет порядок сортировки. Она инициализируется 1 (строка 30). Если -r используется, rflg устанавливается в -1 (строки 89–91).

Следующий псевдокод описывает логику compar(); номера строк на левой границе соответствуют номерам строк ls.c:

407 if ls должна прочесть каталоги # dflg == 0

408  if p1 аргумент командной строки и p1 каталог

409   if p2 не аргумент командной строки и не каталог

410    return 1 # первый идет после второго

      else

       перейти на тест времени

411  else

      # p1 не каталог командной строки

412   if p2 аргумент командной строки и каталог

413    return -1 # первый идет перед вторым

      else

       перейти на тест времени

416 if сортировка основана на времени # tflg равно true

     # сравнить времена:

417  if время p2 равно времени p1

418   return 0

419  if время p2 > времени p1

420   return значение rflg (положительное или отрицательное)

     # время p2 < времени p1

421  return противоположное rflg значение (положительное или отрицательное)

423 Умножить rflg на результат strcmp()

424 для двух имен и вернуть результат

Аргументы strcmp() в строках 423–424 выглядят сбивающими с толку. В зависимости от того, было ли имя файла указано в командной строке или было прочитано из каталога, должны использоваться различные члены объединения ln в struct lbuf.

7.3. Резюме

• V7 ls является сравнительно небольшой программой, хотя она затрагивает многие фундаментальные аспекты программирования Unix — файловый ввод-вывод, вспомогательные данные файлов, содержание каталогов, пользователи и группы, значения времени и даты, сортировку и динамическое управление памятью.

• Наиболее примечательным внешним различием между V7 ls и современной ls является трактовка опций -а и -l. У версии V7 значительно меньше опций, чем у современных версий; заметным недостатком является отсутствие рекурсивной опции -R.

• Управление flist является чистым способом использования ограниченной памяти архитектуры PDP-11, предоставляя в то же время как можно больше сведений, struct lbuf хорошо извлекает нужные сведения из struct stat; это значительно упрощает код. Код для вывода девяти битов доступа компактен и элегантен.

• Некоторые части ls используют удивительно маленькие лимиты, такие, как верхняя граница числа файлов в 1024 или размер буфера в makename() в 100.

Упражнения

1. Рассмотрите функцию getname(). Что случится, если запрошенный ID равен 256, а в /etc/passwd есть следующие две строки, в этом порядке:

joe:xyzzy:2160:10:Joe User:/usr/joe:/bin/sh

jane:zzyxx:216:12:Jane User:/usr/jane:/bin/sh

2. Рассмотрите функцию makename(). Может ли она использовать sprintf() для составления имени? Почему может или почему нет?

3. Являются ли строки 319–320 в readdir() действительно необходимыми?

4. Возьмите программу stat, которую вы написали в качестве упражнения в «Упражнениях» к главе 6. Добавьте функцию nblock() из V7 ls и выведите результаты вместе с полем st_blocks из struct stat. Добавьте видимый маркер, когда они различны.

5. Как бы вы оценили V7 ls по ее использованию malloc()? (Подсказка: как часто вызывается free()? Где ее следовало бы вызвать?)

6. Как вы оценили бы ясность кода V7 ls? (Подсказка: сколько там комментариев?)

7. Очертите шаги, которые нужно было бы сделать, чтобы адаптировать V7 ls для современных систем.

Глава 8

Файловые системы и обходы каталогов

Данная глава завершает обсуждение файловых систем и каталогов Linux (и Unix). Сначала мы опишем, как к логическому пространству имен файловой системы добавляется (и удаляется) раздел диска, содержащий файловую систему, таким образом, что в общем пользователю не нужно ни знать, ни заботиться о месте физического размещения файла, вместе с API для работы с файловыми системами

Затем мы опишем, как перемещаться по иерархическому пространству имен файлов, как получать полный путь текущего рабочего каталога и как без труда обрабатывать произвольные иерархии (деревья) каталогов, используя функцию nftw(). Наконец, мы опишем специализированный, но важный системный вызов chroot().

8.1. Монтирование и демонтирование файловых систем

Унифицированное иерархическое пространство имен файлов является большим достоинством дизайна Linux/Unix. Данный раздел рассматривает, как административные файлы, команды и операционная система объединяются для построения пространства имен из отдельных физических устройств, содержащих данные и служебные данные файлов.

8.1.1. Обзор основ

В главе 5 «Каталоги и служебные данные файлов», были представлены индексы для служебных данных файлов и описано, как элементы каталогов связывают имена файлов с индексами В ней также были описаны разделы и файловые системы, и вы видели, что прямые ссылки ограничены работой в пределах одной файловой системы, поскольку каталоги содержат лишь номера индексов, а последние не уникальны среди всего набора использующихся файловых систем.

Помимо индексов и блоков данных, файловые системы содержат также одну или более копий суперблока. Это специальный дисковый блок, который описывает файловую систему; его сведения обновляются по мере изменений в самой файловой системе. Например, он содержит число свободных и используемых индексов, свободных и используемых блоков и другие сведения. Он включает также магическое число: специальное уникальное значение в специальном месте, которое идентифицирует тип файловой системы (Вскоре мы увидим, насколько это важно.)

1 ... 52 53 54 55 56 57 58 59 60 ... 165
Перейти на страницу:
Тут вы можете бесплатно читать книгу Linux программирование в примерах - Арнольд Роббинс.
Комментарии