Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре
Шрифт:
Интервал:
Закладка:
Эти вставленные друг в друга сферы, которые мы видим, глядя через космос назад в прошлое, — шар доступной для наблюдения вселенной.
И это — шар доступной для наблюдения вселенной.
Итак, мы поняли, что доступная для наблюдения область — это наблюдаемая вселенная, какой мы ее видим: вблизи она сравнительно старая, развившаяся и разреженная, а дальше — моложе, плотнее, новее. Важно, что это не та вселенная, какой она является в данный момент. Согласно модели большого взрыва, при любом заданном космическом возрасте вселенной ее свойства статистически однородны. Например, в среднем одинаков возраст галактик, их распределение по размерам, яркость, относительная численность и так далее. Это то, что мы бы увидели, если бы каким-то образом могли мгновенно пронестись по всей вселенной и одновременно увидеть ее всю. Но сделать это нам не под силу. Поэтому нам остается делать выводы о структуре вселенной, исходя из наблюдений, которые наиболее непосредственно относятся к наблюдаемой вселенной.
Тот факт, что при надлежащем рассмотрении на всех этапах своего развития наша вселенная на больших масштабах однородна, есть свидетельство наличия у вселенной определенных свойств симметрии. Эйнштейн принял это как гипотезу, названную им космологическим принципом. Эта гипотеза Эйнштейна появилась скорее в силу комбинации ее простоты и с точки зрения философии, и с точки зрения прагматичности, а не на основе эмпирических данных. Несмотря на это, оказалось, что она выполняется с фантастической точностью!
Действительно, когда мы следим за небесными сферами, удаляясь все дальше и дальше в прошлое, они в соответствии с моделью большого взрыва растут, становясь все более и более однородными. Во времена, соответствующие космической сфере, которая совпадает с наблюдаемым сейчас реликтовым излучением, температура вселенной составляла порядка 3000 градусов Кельвина и она (вселенная) с точностью до одной стотысячной была однородна — почти идеально безупречная сфера, более гладкая, чем самый гладкий из сделанных мастером из Кашмира бронзовых шаров.
Как и в случае безупречного бронзового шара из Кашмира, такая гладкость, если вдуматься, представляется чем-то мистическим. Можно себе представить, что некий физический процесс сумел «сгладить» вселенную, — подобно тому, как налитые в кофе сливки или выпущенный в воздух дым имеют тенденцию к перемешиванию, постепенно распределяются однородно. (Сегрегация сливок и кофе представляет собой порядок, разрушающийся естественным путем.) Однако вселенная ведет себя не так: из наблюдений следует, что в процессе старения она становится не более однородной, а все более «комковатой». Это связано с тем, что дополнительное гравитационное притяжение более плотных областей притягивает дополнительную материю, делая эти области еще более плотными. Такой процесс превращает мельчайшие неоднородности (порядка одной стотысячной), существовавшие в эпоху образования реликтового излучения, в сложную структуру галактик, которую мы видим в современной вселенной. Более того: даже если бы и был какой-то физический процесс сглаживания, можно показать, что и в том случае, если бы этот процесс происходил со скоростью света, для того, чтобы сгладить изначально неоднородную вселенную, не хватило бы времени между предполагаемым временем t = 0 в модели большого взрыва и тем временем, когда мы наблюдаем реликтовое излучение.
Тогда мы либо должны предположить, что вселенная просто начала свое существование, будучи в высшей степени неоднородной (только неоднородности должны быть «правильными», теми, какие мы видим в реликтовом излучении, и теми, что ответственны за галактики и другие структуры, которые мы видим сейчас), или — что мы что-то не учитываем в исходной модели большого взрыва. Что бы это могло быть?
Положим, мы хотим изготовить большую, невероятно плоскую поверхность, на которой есть только крошечные неровности, но мы очень, очень ограничены во времени. Сначала мы инстинктивно решим гладко отполировать ее, как и поступил Али с медным шаром. Но полировать — это слишком медленно. Времени так мало, что мы успеем только один раз пройтись по поверхности! Мы можем превратить лист в жидкость, и пусть он сам себя разглаживает. Идея великолепная, но опять же — это слишком медленно: за отпущенное нам время исчезнут только самые маленькие неровности, а все, что большего размера, останется. Проблема представляется фундаментальной: мы хотим устранить затруднения, масштаб которых превышает тот, в рамках которого мы можем действовать.
Однако предположим, что нашу поверхность мы сделали из резины. Изначально она может быть сколь угодно неровной и бугристой, но когда мы растягиваем ее (что можно сделать очень быстро), она становится гладкой и большой одновременно. Эйнштейн учил нас, что пространство, как и резина, имеет структуру: оно может искривляться и изгибаться, и его можно растянуть! Около 1980 года Алан Гут[95] предположил буквально следующее: на самой ранней стадии своей истории вселенная в течение очень короткого времени испытала быстрое и ускоренное расширение, что привело к образованию огромных участков пространства-времени — плоских и отполированных до зеркального блеска. Глядя в прошлое на этом участке, мы будем видеть удивительно гладкие сферы (рис. ниже)[96].
Очень скоро уже другие космологи показали, что такой процесс не может обеспечить идеальную гладкость. Это запрещено законами квантовой механики — точно так же, как в случае других динамических систем, эти законы запрещают однозначное истолкование начальных условий. Таким образом, растяжение может привести к сглаживанию изначально существовавших флуктуаций, но небольшие флуктуации, которые можно вычислить, используя квантовую механику, во вселенной останутся.
Инфляция, растягивая неровное пространство, делает его гладким в масштабе, доступном наблюдению.
Воспользовавшись простыми вариантами этой модели, которую Гут назвал инфляцией, космологи получили ряд конкретных результатов. Удивительно, но впоследствии многие предсказания этой модели действительно подтвердились. Хотя некоторые наиболее детальные и интересные результаты инфляционной модели еще требуют проверки, подобная верификация, наряду с большими трудностями поиска других конкурентных и принципиально отличных объяснений раннего состояния вселенной, привела к тому, что многие космологи приняли инфляцию как неотъемлемую часть очень успешной стандартной космологической модели. Она позволяет частично ответить на вопрос Дзеньё, спросившего, кто убирает вселенную? Ответ — инфляция! Ибо представляется очевидным, что инфляция создает