Тайны мозга вашего ребенка - Сэм Вонг
Шрифт:
Интервал:
Закладка:
Следующая стадия развития нервной системы эмбриона – ее сегментация. Нервная трубка делится на составные части к 6-й неделе беременности. Вы можете представлять это как планировку комнат перед строительством нового дома, за исключением того, что сегментация определяется не физическими барьерами, а химическими сигналами. Самый большой отдел нервной трубки в заднем конце человеческого эмбриона становится спинным мозгом. Отдел меньшего размера в головной части разделяется на три сегмента, которые впоследствии становятся тремя разными частями головного мозга (см. рис.).
Задний из этих трех сегментов превращается в ствол головного мозга, который контролирует в основном базовые подсознательные функции, такие как рефлекторные движения глаз и головы, дыхание, частота сердцебиения, сон, половое возбуждение и пищеварение. Кроме того, он образует мозжечок, который собирает сенсорную информацию для управления движением (скажем, подсчитывает, с каким усилием нужно поднять ногу при ходьбе по лестнице).
Средний сегмент образует срединные структуры мозга, включая гипоталамус, миндалевидное тело и гиппокамп (см. рис.). Гипоталамус контролирует более осознанные базовые процессы, такие как регулировка сексуального поведения, голод, жажда, температура тела и дневные ритмы сна и бодрствования, а также выделение стрессовых и половых гормонов. Миндалевидное тело отвечает за эмоции, особенно за чувство страха. У гиппокампа есть две главных функции: он переводит информацию в долговременную память и играет важную роль в пространственной ориентировке.
Третий сегмент, расположенный в передней части мозга, становится таламусом и корой больших полушарий, которая также называется неокортексом. Сенсорная информация, поступающая в организм через глаза, уши или кожу, направляется в таламус – структуру, расположенную в центре мозга, которая фильтрует ее и направляет в кору головного мозга. Ученые подразделяют неокортекс на четыре части, называемые долями. (Две доли каждого отдела симметрично расположены в правом и левом полушарии.) Затылочные доли коры больших полушарий мозга отвечают за зрительное восприятие. Височные доли отвечают за слух, включая понимание устной речи. Кроме того, они тесно взаимодействуют с миндалевидным телом и гиппокампом и играют значимую роль в обучении, запоминании и эмоциональных реакциях. Теменные доли получают осязательную информацию, собирают воедино сигналы от всех органов чувств и направляют наше внимание. Лобные доли управляют осознанным движением, речью и выбором поведения в зависимости от наших намерений и обстановки.
На ранних стадиях созревания эмбриона все эти сегменты мозга имеют крошечные размеры. По мере развития химические маркеры разделяют мозг на большее количество частей и определяют зоны коры, ответственные за определенные аспекты зрения или языка. Группу клеток с общей функцией называют ядром. После определения всех областей мозга они растут и развиваются в определенной последовательности: от затылочной до лобной части (см. рис.). Этот процесс продолжается в детстве и подростковом возрасте (см. главу 9).
Главной целью на ранних этапах развития мозга является создание миллиардов и миллиардов новых клеток. Клетки первоначальной нервной системы многократно делятся и создают дополнительные клетки-предшественники. Эти клетки могут делиться во время движения, оставляя за собой цепочки нейронов. В процессе деления также возникают различные виды глиальных клеток{Глиальные клетки, или глия, – совокупность всех клеток нервной ткани, помимо самих нейронов. Это своего рода соединительная нервная ткань – промежуточные ее клетки, выполняющие разные полезные функции. – Прим. ред.}. Один тип глиальных клеток направляет размещение нейронов на ранних стадиях развития, протягивая длинные волокна, которые действуют как «тропы», по которым следуют нейроны.
Количество клеточных делений и тип клеток, которые они производят, жестко контролируется сочетанием химических сигналов в разных областях мозга и взаимодействием с уже существующими клетками. Добавление новых нейронов в основном завершается к 20 неделям гестационного периода эмбриона (который принято отсчитывать с первого дня последнего менструального периода матери), т.е. примерно через 18 недель после зачатия. Очень небольшое количество нейронов продолжает появляться даже в зрелом возрасте, а новые глиальные клетки формируются в течение всей жизни.
Затем клетки эмбриона начинают дифференцироваться для выполнения конкретных задач. Дифференциация происходит в несколько этапов: по мере того как задачи становятся все более специфическими, они и направляются все более четкими химическими сигналами.
На базовом уровне нейроны имеют много общего. Они получают химические сигналы посредством веществ, называемых нейротрансмиттерами, которые высвобождаются другими (специальными) нейронами. Когда молекулы нейротрансмиттера связываются с принимающими рецепторами на дендритах нейрона, возникают электрические и химические сигналы, которые могут распространяться по всему телу клетки. При достаточном количестве одновременных электрических сигналов тело клетки может генерировать электрический импульс, который используется для «общения» с другими нейронами.
Этот выходной сигнал нейрона, который называется биоэлектрическим потенциалом, передается по аксону – очень длинному и тонкому отростку нейрона, который тянется от тела нейрона, например расположенного в головном мозге, к своей цели (какому-то участку мозга или тела, например к пальцу на ноге). Каждый нейрон имеет один аксон, который часто ветвится для достижения многочисленных участков. Молекулы нейротрансмиттера находятся в специализированных локусах на концах аксонных ответвлений и высвобождаются при получении биоэлектрического импульса. Когда нейротрансмиттер связывается с рецепторами дендрита другого нейрона, тот возбуждается или подавляется – в зависимости от типа передаваемого нейротрансмиттера. Место соединения аксона передающего нейрона с дендритом принимающего нейрона называется синапсом.
Конечный этап дифференциации нервных клеток эмбриона часто зависит от взаимодействия нейронов в синапсах.
Глия (совокупность глиальных клеток) тоже принимает разные формы. Иногда глиальные клетки обволакивают проводящие аксоны, как своего рода изолирующая пластиковая оболочка электрического провода, и образуют слой под названием миелин, он способствует ускорению связи между нейронами. В других случаях глия обрамляет кровеносные сосуды и контролирует химические сигналы, поступающие в мозг и обратно. Глия также образует защитную систему мозга, обволакивая и удаляя инородные вещества и остатки отмирающих клеток. У эмбриона она тоже дифференцируется в соответствии с химическими сигналами, обычно немного позже, чем нейроны в тех же областях.
Практический совет: меньше стресса, меньше проблем
В следующий раз, когда вы начнете беспокоиться о своем будущем ребенке, спросите себя, необходимо ли подвергаться такому стрессу. Неврологи могут оценить последствия стресса, изучая его воздействие на лабораторных животных. Материнский стресс увеличивает риск возникновения разных проблем у младенцев, включая «волчью пасть», депрессивное поведение, повышенную восприимчивость к стрессу в зрелом возрасте (см. главу 26), а также гиперактивность и легкую отвлекаемость (см. главу 28). Гормоны стресса, высвобождаемые самкой животного, оказывают непосредственное воздействие на плод и уменьшают способность плаценты защищать его от этих гормонов в будущем.
Поскольку умышленно подвергать стрессу беременных женщин было бы по меньшей мере неэтично, большинство исследований на людях опирается на корреляции постфактум – менее надежные, чем эксперименты (см. врезку «Знаете ли вы? Почему эпидемиологию трудно интерпретировать»). Некоторые современные исследования тестировали детей, родившихся после того, как их матери пережили природные катастрофы во время беременности. Этот вид исследований приближается к этически допустимому разграничению женщин на группы, которые подвергались и не подвергались стрессу.
Ученые обратились к данным о тропических штормах и ураганах, которые обрушились на Луизиану между 1980 и 1995 годами, а затем вычислили, сколько детей с признаками аутизма в архивах системы здравоохранения штата находились в утробе матери во время одного из этих ураганов. Риск аутизма был значительно выше у детей, чьи матери подвергались подобному стрессу во время беременности, хотя большинство случаев аутизма скорее всего было обусловлено другими причинами (см. главу 27).