(Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов
Шрифт:
Интервал:
Закладка:
Чтобы в самом деле поставить такой эксперимент, мне бы потребовалась необычная монета, натренированное запястье и разрешение не ходить на лекции. В действительности же математические расчеты, основанные на теории случайности, позволили мне провести анализ с помощью формул и компьютера. В большинстве сымитированных мной сезонов 1961 г. обычная цифра отбивок Мариса не выходила за пределы, обычные для Мариса, и это неудивительно. Лишь изредка он отбивал либо намного больше, либо намного меньше. Насколько часто Марис со своими «обычными» результатами выдавал результаты Рута?
Я предполагал, что шансы Мариса с его «обычными» отбивками сравняться с рекордом Рута будут примерно равны шансам Джека Уиттакера, когда несколько лет назад тот, покупая в магазинчике печенье на завтрак, добавил еще один доллар и в результате оказался победителем лотереи штата, получив 314 тыс. долларов. Таковы должны были быть шансы менее способного игрока. Однако Марис с его «обычными» отбивками, хоть и не был Рутом, все же находился на уровне гораздо выше среднего. Так что случайная вероятность для Мариса поставить рекорд была вовсе не микроскопической: предполагалось, что он сравняется с результатом Рута или побьет его 1 раз в каждые 32 сезона. Может, это и не такая уж высокая вероятность, и возможно, вы не захотели бы поставить ни на Мариса, ни в особенности на 1961 г. Однако эта вероятность подводит к удивительному выводу. Чтобы понять, почему, зададим вопрос поинтересней. Рассмотрим всех, абсолютно всех игроков со способностями, равными «обычному» Марису, которых от рекорда Рута до «стероидной эры» (когда спортсмены стали принимать препараты и соответственно отбивать гораздо лучше) отделяют аж семьдесят лет. Какова вероятность, что некоторые игроки в некоторый момент достигнут рекорда Рута или побьют его по чистой случайности? Разумно ли считать, что в тот сезон Марису самым банальным образом повезло?
Согласно истории, в тот период на каждые 3 года приходилось примерно по 1 игроку со способностями и возможностями, сравнимыми со способностями и возможностями «обычного» Мариса 1961 г. Когда вы все суммируете, у вас получится вероятность — благодаря чистой случайности один из тех игроков мог бы запросто сравняться с Рутом или побить его рекорд, и случайность эта равняется немногим более 50%. Другими словами, за период в семьдесят лет случайный рывок в 60 или более отбивок для игрока, от которого ожидают не более 40, — феномен, нечто вроде внезапного громкого треска, который возникает посреди помех при плохой телефонной связи. И уж конечно же, мы станем боготворить либо чернить (и наверняка бесконечно анализировать) этого «везунчика», кем бы он ни оказался.
Невозможно утверждать наверняка, действительно ли Марис играл в 1961 г. лучше всего или же ему просто-напросто подфартило. Подробный анализ бейсбола и других спортивных игр такими именитыми учеными, как ныне покойный Стивен Джей Гулд и нобелевский лауреат Э.М. Перселл, доказывает: модели с подбрасыванием монет вроде тех, которые описал я, очень схожи с реальным выступлением и игроков, и команд, включая их «холодные и горячие периоды»[5]{22}.
Когда мы рассматриваем невероятный успех, будь то в спорте или где еще, необходимо помнить о следующем: необычные события могут происходить без необычных тому причин. Случайные события часто выглядят как неслучайные, и, истолковывая все, что связано с человеком, нужно быть осторожным — не спутать одно с другим. Прошло не одно столетие, прежде чем ученые научились смотреть дальше очевидного порядка и распознавать скрытую случайность в природе и повседневной жизни. В данной главе я коротко познакомил вас с принципами действия. В последующих же главах рассмотрю основные положения случайности в историческом контексте и значимость этих положений. Таким образом, окружающий нас повседневный мир получит иную перспективу, вы лучше поймете связь между этим основным аспектом природы и нашим собственным опытом.
Глава 2
ЗАКОНЫ ПРАВДЫ И ПОЛУПРАВДЫ
Когда человек смотрит на небо в безоблачную, безлунную ночь, его глаз различает тысячи мерцающих источников света. Беспорядочно раскиданные по небу звезды на самом деле расположены в определенной закономерности — в виде созвездий. Там Лев, здесь Большая Медведица… Умение распознавать созвездия может быть как преимуществом, так и недостатком. Исаак Ньютон размышлял над закономерностями падения предметов и вывел закон всемирного тяготения. Кто-нибудь другой подмечает, что удачно выступает в спортивных состязаниях, когда на нем ношеные носки, — вот и ходит в грязных. Как распознать среди всевозможных закономерностей природы те, которые действительно имеют смысл? Ответ на этот вопрос можно дать, основываясь исключительно на практике. Геометрия родилась из набора аксиом, теорем, доказательств, разработанных крупными философами, однако не удивляйтесь тому, что теория случайности оказалась порождением умов, интересовавшихся гаданиями и азартными играми, то есть тех, кого мы скорее представим с игральными костями или волшебным снадобьем, нежели с книгой или свитком в руках.
Можно сказать, что в основе теории случайности лежит зашифрованный здравый смысл. Но она же представляет собой и сплошное коварство: бывало, имевшие солидную репутацию специалисты совершали ошибки, а пользовавшиеся дурной славой игроки оказывались правы. Чтобы понять теорию случайности и преодолеть заблуждения, необходим опыт и вдумчивый анализ. Итак, мы начинаем наше путешествие, отталкиваясь от основных законов вероятностей и проблем, связанных с их раскрытием, пониманием и применением. Одним из классических исследований на тему интуитивного понимания людьми этих законов можно считать эксперимент, который провели двое людей, сделавших так много для нашего просвещения, — Дэниэл Канеман и Амос Тверский{23}. Не робейте, присоединяйтесь — узнаете кое-что о своей собственной вероятностной интуиции.
Представьте себе женщину по имени Линда: ей тридцать один год, она не замужем, ей свойственна прямота и исключительный ум. В колледже она в качестве основного предмета изучала философию. В студенческие годы Линда активно выступала против дискриминации и социальной несправедливости, участвовала в демонстрациях против использования ядерной энергии. Все это Тверский и Канеман рассказали группе из восьмидесяти восьми человек и попросили их оценить следующие утверждения по шкале из восьми баллов: 1 балл — наиболее вероятное утверждение, 8 баллов — наименее вероятное. Вот результаты, от наиболее до наименее вероятных (табл. 1).
Утверждение Средний балл вероятности Линда принимает активное участие в феминистском движении 2.1 Линда является социальным работником в области психиатрии 3.1 Линда работает в книжном магазине и занимается йогой 4.1 Линда работает в банке и принимает активное участие в феминистском движении 4.1 Линда работает учителем в начальной школе 5.2 Линда является членом Лиги женщин-избирателей 5.4 Линда работает в банке 6.2 Линда работает страховым агентом 6.4Таблица 1.
На первый взгляд может показаться, что ничего необычного в таких результатах нет: по описанию Линда скорее походила на активную феминистку, чем на банковского служащего или страхового агента. Однако обратим внимание на три возможности и их средние баллы, данные ниже в порядке от наиболее до наименее вероятного. 85% опрашиваемых оценили эти три возможности следующим образом (табл. 2).
Утверждение Средний балл вероятности Линда принимает активное участие в феминистском движении 2.1 Линда работает в банке и принимает активное участие в феминистском движении 4.1 Линда работает в банке 6.2Таблица 2.
Если вы не видите ничего необычного, значит, Канеману и Тверскому удалось провести вас, потому как если вероятность того, что Линда работает в банке и принимает активное участие в феминистском движении, больше, чем вероятность того, что Линда работает в банке, нарушается наш первый закон вероятностей, один из основных: «Вероятность того, что произойдут оба события, не может быть выше вероятности того, что каждое из событий произойдет по отдельности». Почему нет? Простая арифметика: вероятность того, что событие А произойдет = вероятности того, что события А и В произойдут + вероятность того, что событие А произойдет, а событие В не произойдет.