Категории
Самые читаемые
PochitayKnigi » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (КВ) - БСЭ БСЭ

Большая Советская Энциклопедия (КВ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (КВ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 58
Перейти на страницу:

Квазичастицы

Квазичасти'цы (от квази... и частицы), одно из фундаментальных понятий теории конденсированного состояния вещества, в частности теории твёрдого тела. Теоретическое описание и объяснение свойств конденсированных сред (твёрдых тел и жидкостей), исходящее из свойств составляющих их частиц (атомов, молекул), представляет большие трудности, во-первых, потому, что число частиц огромно (~ 1022 частиц в 1 см3), и, во-вторых, потому, что они сильно взаимодействуют между собой. Из-за взаимодействия частиц полная энергия такой системы, определяющая многие её свойства, не является суммой энергий отдельных частиц, как в случае идеального газа. Частицы конденсированной среды подчиняются законам квантовой механики; поэтому свойства совокупности частиц, составляющих твёрдое тело (или жидкость), могут быть поняты лишь на основе квантовых представлений. Развитие квантовой теории конденсированных сред привело к созданию специальных физических понятий, в частности к концепции К. — элементарных возбуждений всей совокупности взаимодействующих частиц. Особенно плодотворные результаты концепция К. дала в теории кристаллов и жидкого гелия.

  Свойства квазичастиц. Оказалось, что энергию E0 кристалла (или жидкого гелия) можно приближённо считать состоящей из двух частей: энергии основного (невозбуждённого) состояния E0 (наименьшая энергия, соответствующая состоянию системы при абсолютном нуле температуры) и суммы энергий El элементарных (несводимых к более простым) движений (возбуждений):

E = E0 +

  Индекс l характеризует тип элементарного возбуждения, nl — целые числа, показывающие число элементарных возбуждений типа l.

  Т. о., энергию возбуждённого состояния кристалла (гелия) оказалось возможным записать так же, как и энергию идеального газа, в виде суммы энергий. Однако в случае газа суммируется энергия его частиц (атомов и молекул), а в случае кристалла суммируются энергии элементарных возбуждений всей совокупности атомов (отсюда термин «К.»). В случае газа, состоящего из свободных частиц, индекс l обозначает импульс р частицы, El её энергию El = p2/2m, m — масса частицы), nl число частиц, обладающих импульсом р. Скорость u = p/m.

  Элементарное возбуждение в кристалле также характеризуют вектором р, свойства которого похожи на импульс, его называют квазиимпульсом. Энергия El элементарного возбуждения зависит от квазиимпульса, но эта зависимость El(p) носит не такой простой характер, как в случае свободной частицы. Скорость распространения элементарного возбуждения также зависит от квазиимпульса и от вида функции El(p). В случае К. индекс l включает в себя обозначение типа элементарного возбуждения, поскольку в конденсированной среде возможны элементарные возбуждения, разные по своей природе (аналог — газ, содержащий частицы различного сорта).

  Введение для элементарных возбуждений термина «К.» вызвано не только внешним сходством в описании энергии возбуждённого состояния кристалла (или жидкого гелия) и идеального газа, но и глубокой аналогией между свойствами свободной (квантовомеханической) частицы и элементарным возбуждением совокупности взаимодействующих частиц, основанной на корпускулярно-волновом дуализме. Состояние свободной частицы в квантовой механике описывается монохроматической волной (см. Волны де Бройля), частота которой , а длина волны p (E и  — энергия и импульс свободной частицы,  — Планка постоянная). В кристалле возбуждение одной из частиц (например, поглощение одним из атомов фотона), приводящее из-за взаимодействия (связи) атомов к возбуждению соседних частиц, не остаётся локализованным, а передаётся соседям и распространяется в виде волны возбуждений. Этой волне ставится в соответствие К. с квазиимпульсом  и энергией E = hw(k) (k — волновой вектор, длина волны l = 2p/k).

  Зависимость частоты от волнового вектора к позволяет установить зависимость энергии К. от квазиимпульса. Эта зависимость El = E (p) называют законом дисперсии, является основной динамической характеристикой К., в частности определяет ее скорость . Знание закона дисперсии К. позволяет исследовать движение К. во внешних полях, К., в отличие от обычной частицы, не характеризуется определённой массой, Однако, подчёркивая сходство К. и частицы, иногда удобно вводить величину, имеющую размерность массы. Её называют эффективной массой mэф. (как правило, эффективная масса зависит от квазиимпульса и от вида закона дисперсии).

  Всё сказанное позволяет рассматривать возбуждённую конденсированную среду как газ К. Сходство между газом частиц и газом К. проявляется также в том, что для описания свойств газа К. могут быть использованы понятия и методы кинетической теории газов, в частности говорят о столкновениях К. (при которых имеют место специфические законы сохранения энергии и квазиимпульса), длине свободного пробега, времени свободного пробега и т.п. Для описания газа К. может быть использовано кинетическое уравнение Больцмана. Одно из важных отличительных свойств газа К. (по сравнению с газом обычных частиц) состоит в том, что К. могут появляться и исчезать, т. е. число их не сохраняется. Число К. зависит от температуры. При Т = 0 К квазичастицы отсутствуют. Для газа К. как квантовой системы можно определить энергетический спектр (совокупность энергетических уровней) и рассматривать его как энергетический спектр кристалла или жидкого гелия. Разнообразие типов К. велико, т.к. их характер зависит от атомной структуры среды и взаимодействия между частицами. В одной и той же среде может существовать несколько типов К.

  К., как и обычные частицы, могут иметь собственный механический момент — спин. В соответствии с его величиной (выражаемой целым или полуцелым числом h) К. можно разделить на бозоны и фермионы. Бозоны рождаются и исчезают поодиночке, фермионы рождаются и исчезают парами.

  Для К.-фермионов распределение по энергетическим уровням определяется функцией распределения Ферми, для К.-бозонов — функцией распределения Бозе. В энергетическом спектре кристалла (или жидкого гелия), который является совокупностью энергетических спектров всех возможных в них типов К., можно выделить фермиевскую и бозевскую «ветви». В некоторых случаях газ К. может вести себя и как газ, подчиняющийся Больцмана статистике (например, газ электронов проводимости и дырок в невырожденном полупроводнике, см. ниже).

  Теоретическое объяснение наблюдаемых макроскопических свойств кристаллов (или жидкого гелия), основанное на концепции К., требует знания закона дисперсии К., а также вероятности столкновений К. друг с другом и с дефектами в кристаллах. Получение численных значений этих характеристик возможно только путём применения вычислительной техники. Кроме того, существенное развитие получил полуэмпирический подход: количественные характеристики К. определяются из сравнения теории с экспериментом, а затем служат для расчёта характеристик кристаллов (или жидкого гелия).

  Для определения характеристик К. используются рассеяние нейтронов, рассеяние и поглощение света, ферромагнитный резонанс и антиферромагнитный резонанс, ферроакустический резонанс, изучаются свойства металлов и полупроводников в сильных магнитных полях, в частности циклотронный резонанс, гальваномагнитные явления и т.д.

  Концепция К. применима только при сравнительно низких температурах (вблизи основного состояния), когда свойства газа К. близки к свойствам идеального газа. С ростом числа К. возрастает вероятность их столкновений, уменьшается время свободного пробега К. и, согласно неопределённостей соотношению, увеличивается неопределённость энергии К. Само понятие К. теряет смысл. Поэтому ясно, что с помощью К. нельзя описать все движения атомных частиц в конденсированных средах. Например, К. непригодны для описания самодиффузии (случайного блуждания атомов по кристаллу).

1 2 3 4 5 6 7 8 9 10 ... 58
Перейти на страницу:
Тут вы можете бесплатно читать книгу Большая Советская Энциклопедия (КВ) - БСЭ БСЭ.
Комментарии