Шаг за шагом. Транзисторы - Рудольф Сворень
Шрифт:
Интервал:
Закладка:
Несколько слов для тех, кого удивляет отсутствие смещения на базе транзистора Т1. Дело в том, что этот транзистор работает в режиме детектирования и его эмиттерный переход должен «срезать» половину высокочастотного модулированного напряжения. А для этого на базе не должно быть смещения (рис. 36).
Следующий приемник выполнен по схеме 2—V—0, рассчитан на прием одной станции, работает на головные телефоны и питается от одного гальванического элемента на 1,5 в.
рис. 97—3
Применить столь низкое питающее напряжение оказалось возможным благодаря тому, что в качестве нагрузки в обоих каскадах используются катушки (L3 и L4). На них почти не теряется постоянное напряжение (рис. 38) и в то же время создается сравнительно большое напряжение усиленного сигнала (Воспоминание № 15).
Детектор выполнен по схеме с удвоением (рис. 27—17). Начальное смещение на базу каждого транзистора устанавливают подбором резисторов R1 и R2 с таким расчетом, чтобы коллекторный ток покоя составлял примерно 1 ма. Резисторы R1 и R2, хотя они и подключены непосредственно к коллектору (рис. 87, листок Б), не являются элементами термостабилизации: на катушках L3 и L4 почти нет постоянного падения напряжения, и постоянное напряжение на коллекторе примерно такое же, как и на «минусе» батареи.
Обратите внимание, что емкость разделительного конденсатора С3 во много раз меньше, чем емкость аналогичного разделительного конденсатора С4 в предыдущей схеме. Как вы уже, очевидно, догадались, разница эта связана с тем, что первый из конденсаторов «работает» в усилителе ВЧ, а второй — в усилителе НЧ (Воспоминание № 13). Конденсатор С2 вводится в схему для того, чтобы катушка L2 не закорачивала входную цепь Т1 (эмиттерный переход) по постоянному току.
В заключение данные деталей. Катушки L3 и L4 намотаны на кольцах из феррита Ф-600 с внешним диаметром 8 мм и внутренним 5 мм. Каждая катушка содержит по 200 витков провода ПЭЛШО 0,12. Данные магнитной антенны: стержень из феррита Ф-600, диаметр 8 мм, длина 45 мм; катушка L1 содержит 220 витков провода ПЭ 0,2, а катушка L2 (она намотана поверх L1) — 10 витков того же провода. Данные эти действительны лишь для фиксированной настройки на станцию «Маяк», работающую на волне 547. м. Если вы захотите настроиться на другую станцию, то придется менять не только данные катушки L1 (или конденсатора C1), но, возможно, еще и данные катушек L3 и L4.
Прежде чем разбирать следующую схему (рис. 97—4), вернёмся к предыдущей (рис. 97—2). Вы, очевидно, помните, что в коллекторной цепи нашего первого каскада — триодного детектора — мы сразу же замкнули на «землю» высокочастотную составляющую продетектированного сигнала. Она оказалась просто отходом производства. Но, как говорится, у хорошего хозяина ничего не пропадает, и этот высокочастотный «отход» тоже можно использовать для дела.
Входным элементом всех наших приемников является колебательный контур, настроенный в резонанс на частоту принимаемой станции. За счет резонанса контур сам повышает напряжение сигнала (Воспоминания №№ 18, 19, 20), причем повышает его тем сильнее, чем выше добротность этого контура. Кроме того, с увеличением добротности становится острее и резонансная кривая, приемник лучше отфильтровывает сигналы соседних мешающих станций.
Существует ряд мер, позволяющих повысить добротность контура, и это прежде всего — уменьшение разного рода потерь. Но можно повысить добротность входного контура и иначе — ввести в него положительную обратную связь (рис. 85, 99).
Рис. 99. Положительная обратная связь компенсирует потери энергии в контуре.
Поддерживая колебания в контуре, положительная обратная связь вносит в него дополнительную энергию и, по сути дела, уменьшает собственные потери в контуре. Результат действия положительной обратной связи удобно представить себе как внесение в контур некоторого отрицательного сопротивления Rвн, которое не отбирает энергию, как обычное (положительное) сопротивление Rк, а, наоборот, отдает ее. Общее сопротивление потерь в контуре определяется суммой своего собственного сопротивления Rк и вносимого отрицательного сопротивления — Rвн. Чем сильнее обратная связь, тем больше отрицательное сопротивление, тем меньше потери в контуре и выше его добротность.
Отрицательное сопротивление — это, разумеется, условность, удобный прием для описания сложного процесса. Для тех, кого эта условность коробит, напоминаем, что введенный в нашу схему резистор Rк— это тоже условность. Никакого резистора в контуре нет, и величина Rк определяется потерями в проводах, в диэлектрике конденсатора, в каркасе катушки, потерями на излучение и т. п.
Схема простейшего приемника с положительной обратной связью приведена на рис. 97—4.
рис. 97—4.
Данные катушки L2 такие же, как и катушки связи в предыдущих приемниках. Расположена она также рядом с контурной катушкой. Эта катушка L2 включена в коллекторную цепь, по ней проходит усиленная высокочастотная составляющая продетектированного сигнала (в коллекторной цепи все составляющие оказываются усиленными), и таким образом часть энергии вводится обратно из коллекторной цепи в цепь базы.
В схеме приемника имеется лишь один незнакомый элемент — цепочка R1C3. Она служит для плавного изменения степени (принято говорить «глубины») обратной связи. Чем выше по схеме движок резистора R1, тем меньше общее сопротивление этой цепочки, тем в большей степени высокочастотная составляющая коллекторного тока замыкается на «землю». В крайнем верхнем положении движка коллектор окончательно заземлен по высокой частоте, и положительной обратной связи вообще нет. Такая регулировка нужна потому, что обратная связь должна быть как можно сильнее, но в то же время не должна быть слишком сильной.
Что скрывается за этим словом «слишком», мы узнаем чуть позже, в разделе «Превращение в генератор». А пока лишь отметим, что при слишком сильной положительной обратной связи приемник вообще перестает принимать и становится источником помех для всех соседних приемников. По этой причине, а также потому, что усилитель с положительной обратной связью не так-то просто наладить, такие каскады не получили распространения. Результаты, которые дает положительная обратная связь, можно получить другими, менее сложными и более спокойными средствами.
Следующий приемник собран по схеме 1—V—3 (рис. 97—7).
рис. 97—7
Первый каскад (T1) — уже знакомый нам усилитель ВЧ. В его коллекторную цепь включена катушка L3 — первичная обмотка высокочастотного трансформатора. Со вторичной обмотки этого трансформатора сигнал подается на детектор, а он, в свою очередь, включен непосредственно во входную цепь первого каскада усилителя НЧ (Т2).
Схема усилителя НЧ этого приемника еще не знакома нам ни в общем, ни в конкретном виде. Отличительная особенность усилителя в том, что в нем применена непосредственная межкаскадная связь, связь без разделительных конденсаторов (рис. 100).
Рис. 100. В «составном транзисторе» входная цепь второго каскада входит непосредственно в первый каскад в качестве нагрузки.
Первый каскад усилителя (транзистор Т2) собран по схеме с общим коллектором (ОК), а его нагрузкой является входная цепь следующего каскада — эмиттерный переход транзистора Т3. По переменному току как будто все получается неплохо — входное сопротивление транзистора Т3 вполне может служить нагрузкой для Т2. По постоянному току тоже все хорошо: коллекторная цепь транзистора Т2 — это своего рода резистор, через который с «минуса» подается смещение на базу Т3, как оно и подавалось бы через резистор Rб. Кстати, сам второй каскад усилителя (Т3) тоже собран по схеме ОК, и его нагрузкой также является входная цепь следующего, выходного каскада (Т4). И «резистором», через который подается смещение на базу Т4, также служит коллекторная цепь предыдущего транзистора (Т3). Здесь, правда, для подгонки режима вводится еще и резистор Rб.