Этот «цифровой» физический мир - Андрей Гришаев
Шрифт:
Интервал:
Закладка:
Но мы полагаем, что имеет место ещё один сценарий, который выглядит как «рождение» пары электрон-позитрон: это диссоциация предельно связанной пары. В самом деле, достаточно энергичное воздействие на предельно связанную пару должно приводить к разрыву связи и к освобождению электрона и позитрона. Но свободный позитрон при первой же возможности вновь свяжется со свободным электроном – аналогично тому, как ион и электрон при первой же возможности рекомбинируют, образуя нейтральный атом.
Теперь заметим: поскольку энергия кванта аннигиляции, 511 кэВ, равна энергии связи у предельно связанной пары, то квант, «излучённый» при образовании одной такой пары, способен эффективно разрушить другую. При достаточно сильном инициирующем воздействии, цепочки многократных диссоциаций-рекомбинаций предельно связанных пар могут производить впечатление лавинообразного «рождения» электронов и позитронов. Весьма похоже, что в этом и заключается разгадка электрон-фотонной компоненты каскадных ливней [Я1], порождаемых частицами космических лучей с высокой энергией. Такая частица, на наш взгляд, не только разбивает предельно связанные пары на своём пути, она ещё может выбивать из ядер вторичные частицы, которые, в свою очередь, тоже могут разбивать предельно связанные пары. Фотографии электрон-позитронных ливней, возникающих при прохождении космической частицы сквозь свинцовые пластинки в камере Вильсона, приведены, например, в [С1,Я1]. Традиционная интерпретация феномена такова: все эти электроны и позитроны, оставляющие треки, рождаются за счёт убыли кинетической энергии инициирующей частицы. В рамках этого подхода можно сделать нижнюю оценку стартовой энергии инициирующей частицы – хотя бы по числу треков в ливне. Известно, что подобные оценки, особенно для случаев сильных ливней, дают значения кинетических энергий, которые на порядки превышают энергию покоя инициирующей частицы. Но является ли это доказательством релятивистского роста энергии? Мы предлагаем интерпретацию, в которой релятивистский рост не требуется: инициирующая частица теряет энергию на освобождение лишь первичных электронов и позитронов – а подавляющее большинство треков оставляют электроны и позитроны вторичные, третичные, и т.д., «возникающие» и «пропадающие» в цепочках диссоциаций-рекомбинаций предельно связанных пар [Г4].
С учётом вышеизложенного, экспериментальные реалии свидетельствуют, скорее, в пользу наших представлений о феноменах «аннигиляции и рождения пар» - при которых отнюдь не происходит полных превращений вещества в гамма-излучение, и наоборот.
Интересно, что этого полного превращения не происходит даже при взаимодействии электрона и позитрона, хотя они являются, по-видимому, единственной парой частица-античастица со «стопроцентным антагонизмом». Ведь мы полагаем, что противоположные электрические заряды – это противофазные квантовые пульсации на электронной частоте (4.1), причём электронная частота характеризует всю собственную энергию электрона или позитрона. Напротив, у протона и антипротона электронная частота соответствует лишь ничтожной части их собственных энергий, и можно ожидать, что при их аннигиляции процентный выход излучения будет ещё меньшим, чем при аннигиляции электрон-позитронной пары. И это действительно так: вопреки расхожим представлениям об аннигиляции вещества и антивещества, протон и антипротон превращаются не в гамма-кванты, а в несколько пи-мезонов [М2]. Но это тоже называется аннигиляцией. Уж больно слово красивое!
4.9. Алгоритм, формирующий атомарные связки «протон-электрон».
Ортодоксы полагают, что каждая заряженная частица взаимодействует со всеми другими заряженными частицами – и через это получают неразрешимые теоретические проблемы. «Каждый заряд даёт вклад в электромагнитное поле, а это поле действует на каждый заряд, значит, каждый заряд действует и на самого себя» - этот подход приводит к бесконечным энергиям взаимодействия зарядов с самими собой.
Напротив, в логике «цифрового» мира подобные несуразицы отсутствуют. Электрический заряд – как не обладающий энергией идентификатор (4.1) для пакета программ, обеспечивающего «электромагнитные взаимодействия» – не действует не только на себя, но и на другие заряды. Энергии связи в структурах вещества конкретны и однозначны. Так, принцип действия связующего алгоритма (4.7) подразумевает, что квантовый пульсатор может быть связан, на некотором интервале времени, лишь с одним партнёром. Для формирования структур более сложных, чем стционарно связанная пара элементарных частиц, требуется либо использовать частицы с несколькими частотами квантовых пульсаций (например, протон (4.6)), либо применять циклические переключения связей – формируя, таким образом, динамическую структуру.
Нам представляется, что структура многоэлектронного атома сформирована следующим образом. Каждый атомарный электрон стационарно связан только с одним, соответствующим ему, протоном, причём, кулоновское взаимодействие не играет в этой связи никакой роли: связь обусловлена алгоритмом, описанным в 4.7. Таким образом, нейтральный атом состоит из стационарных связок «протон-электрон», число которых равно атомному номеру. Эти связки удерживаются вместе благодаря тому, что протоны динамически связаны в ядре, причём важную роль в динамической структуре ядра играют нейтроны. О природе ядерных связей мы будем говорить ниже (4.12), сейчас же остановимся на связках «протон-электрон».
Нам представляется, что атомарная связка «протон-электрон» формируется при работе связующего алгоритма (4.7), который попеременно прерывает пульсации на электронной частоте – как у электрона, так и у протона. Эти прерывания, обеспечивающие связку «протон-электрон», мы будем называть атомными прерываниями. Результирующие «дорожки» квантовых пульсаций у связанных протона и электрона схематически изображены на Рис.4.9. Здесь показан один период атомных прерываний (Те – период пульсаций на электронной частоте). Обратим внимание: на том полупериоде атомных прерываний, когда электронные пульсации в протоне «отключены», его нуклонные пульсации имеют место. Так и должно быть, если связующий механизм манипулирует лишь электронными пульсациями.
Рис.4.9
Интересно, что, при атомных прерываниях, противоположные электрические заряды электрона и протона пребывают в бытии попеременно. В принципе, из-за этого «отключалось» бы их кулоновское притяжение друг к другу. Но, для многоэлектронных атомов, при «отключении» кулоновского притяжения лишь между компаньонами в каждой связке «протон-электрон», оставалось бы притяжение между электронами и протонами из различных связок – которое приходилось бы сдерживать. Мы полагаем, что эта проблема решена радикально: у компаньонов связок «протон-электрон», имеющих 50-процентную скважность атомных прерываний, электрические заряды полностью «отключены» - связанные частицы управляются иначе, чем свободные. Соответственно, атомарные электроны не обязаны пребывать в орбитальном или ином движении для того, чтобы атомная структура была устойчивой.
Поэтому мы не разделяем ни резерфордовский подход, согласно которому атомарные электроны обращаются вокруг ядра, ни квантово-механический подход, согласно которому они размазаны по электронным облакам. Силы, формирующие атомарные связки «протон-электрон» - это силы не притяжения и не отталкивания: это силы удержания на определённом расстоянии. Мы полагаем, что каждый атомарный электрон пребывает в индивидуальной области удержания, в которой на него действует вышеназванный механизм связующих прерываний. Эта область удержания имеет, по-видимому, шаровую форму и размер, на порядок меньший расстояния от ядра.
Теперь заметим, что энергию связи Eат в одной атомарной связке «протон-электрон» можно выразить тремя способами: через дефект масс связанных компаньонов, через частоту атомных прерываний, и через энергию циклических перебросов энергии электронных пульсаций из электрона в протон и обратно. Получаем:
Eат = 2Δmc2 = 2hΩат = hK/2rат , (4.9.1)
где Δm – дефект массы у электрона и у протона из-за прерываний их электронных пульсаций, h - постоянная Планка, Ωат - частота атомных прерываний, rат - расстояние между протоном и центром области удержания электрона, и K - множитель, имеющий размерность скорости. Для основных, невозбуждённых, состояний атомарных электронов множитель K равен 700 км/с – эта величина, поразительным образом, совпадает со значением, которое Н.А.Козырев называл «скоростью перехода причины в следствие» или «ходом времени».