Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Радиотехника » Электроника для начинающих (2-е издание) - Чарльз Платт

Электроника для начинающих (2-е издание) - Чарльз Платт

Читать онлайн Электроника для начинающих (2-е издание) - Чарльз Платт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 60 61 62 63 64 65 ... 128
Перейти на страницу:
импульс, начиная процесс заново.

Несимметричность интервалов «включено/выключено»

Когда таймер работает в автоколебательном режиме, конденсатор С1 заряжается через последовательно соединенные резисторы R1 и R2. Но разряд конденсатора С1 на микросхему происходит только через резистор R2. Поскольку этот конденсатор заряжается через два резистора, а разряжается только через один из них, он заряжается медленнее, чем разряжается. Пока С1 заряжается, выходной сигнал на контакте 3 находится в высоком состоянии; когда С1 разряжается, выходной сигнал оказывается в низком состоянии. В результате этого длительность состояния «включено» всегда больше, чем «выключено». Сказанное наглядно иллюстрирует рис. 4.26.

Рис. 4.26. При стандартном включении таймера 555 в режиме автоколебаний импульсы всегда длиннее, чем паузы между ними

Если вы желаете, чтобы интервалы включения и выключения были одинаковыми, или если необходимо раздельно задавать их длительность (например, нужно отправлять на другую микросхему очень короткий импульс с последующей длительной паузой до следующего импульса), то все, что потребуется, – это добавить диод, как показано на рис. 4.27. Поскольку на диоде падает часть напряжения, такая схема будет лучше работать с источником питания выше 5 В.

Теперь, когда конденсатор С1 заряжается, электрический ток проходит через резистор R1 как и ранее, но идет в обход резистора R2 через диод. Когда конденсатор С1 разряжается, диод закрыт, поэтому разряд происходит через резистор R2.

Теперь резистор R1 определяет время заряда, a R2 – время разряда. Формула для приближенного вычисления частоты теперь выглядит так:

Частота = 1440 / ((R1 + R2) × С1),

где номиналы R1 и R2 измеряются в килоомах, а емкость С1 – в микрофарадах. (Я употребил слово «приближенного», потому что диод добавляет в цепь небольшое сопротивление, которое не отражено в данной формуле.)

Рис. 4.27. Добавление диода в обход резистора R2 позволяет независимо задавать длительность высокого и низкого выходного сигнала таймера

Если вы сделаете номиналы R1 и R2 равными, то должны получить почти одинаковую продолжительность интервалов включения и выключения.

Вариант регулировки частоты

Частоту выходного сигнала можно регулировать не только потенциометром, меняющим эквивалентное сопротивление R2, но и в некоторой степени с помощью контакта 5 (вывод управления). Это показано на рис. 4.28.

Отключите конденсатор, который был подсоединен к контакту 5, и замените его цепочкой резисторов, как показано на рис. 4.28. В данной схеме при любом положении движка потенциометра между выводом 5 и положительной или отрицательной шинами источника питания всегда будет сопротивление 1 кОм. Подключение управляющего вывода напрямую к источнику питания не повредит таймер, однако при этом звук не будет слышен. По мере вращения потенциометра будет изменяться частота. Это происходит из-за того, что меняется эталонное напряжение на компараторе В внутри микросхемы.

Рис. 4.28. Схема, демонстрирующая работу управляющего вывода таймера 555

Последовательное соединение таймеров

Микросхемы таймера можно соединить четырьмя различными способами. Обратите внимание, что эти конфигурации работают независимо от того, в каком режиме (ждущем или автоколебательном) находится каждый из таймеров (за исключением специально оговоренных случаев).

• Если один из таймеров питается от источника 9 В, то его выходного сигнала будет достаточно для питания другого таймера 555 (рис. 4.29).

Рис. 4.29. Один таймер питает другой

Рис. 4.30. Один таймер запускает другой

• Выходной сигнал одного таймера может запускать другой таймер. Это верно только тогда, когда второй таймер работает в ждущем режиме. В режиме автоколебаний он будет запускать сам себя (рис. 4.30).

• Выходной сигнал с одного таймера можно подать на вывод сброса другого таймера (рис. 4.31).

• Выходной сигнал с одного таймера можно через подходящий резистор подать на управляющий вывод другого таймера (рис. 4.32).

Рис. 4.31. Один таймер управляет сбросом другого

Рис. 4.32. Один таймер управляет другим

С какой целью таймеры соединяют в цепочку? Например, вам может понадобиться, чтобы два таймера работали в моностабильном режиме так, чтобы в момент окончания высокого уровня напряжения на выходе первого таймера появлялся высокий уровень на втором, и наоборот. На самом деле вы можете соединить в цепочку сколько угодно таймеров, причем последний может запускать первый. Такое устройство может, например, управлять гирляндой светодиодов.

На рис. 4.33 показаны четыре таймера, соединенные друг за другом. Они подключены через разделительные конденсаторы, поскольку нам нужно, чтобы короткий импульс одного таймера запускал следующий. Без этих конденсаторов окончания импульса первого таймера в цепочке запускало бы второй таймер, однако выходной сигнал первого таймера оставался бы в низком состоянии, что привело бы к непрерывному запуску второго таймера.

Кроме того, на запускающем выводе каждого таймера нужно предусмотреть подтягивающий резистор номиналом 10 кОм, чтобы поддерживать его в высоком состоянии.

Если в цепочку соединены моностабильные таймеры, возникает интересный вопрос. Как они начнут работу? Я упоминал в эксперименте 16, что таймер 555 в ждущем режиме будет, как правило, выдавать одиночный спонтанный импульс при первом включении. Когда несколько таймеров соединены вместе, они все будут пытаться сделать это почти одновременно, а поскольку присутствуют небольшие отличия в заводских характеристиках, результат окажется непредсказуемым. Иногда они будут «успокаиваться» в правильной упорядоченной последовательности, а в других случаях светодиоды в результате будут включаться парами.

Совладать с этим можно с помощью подавления импульса, которое я описывал в эксперименте 16 (см. раздел «Подавление импульса» этой главы).

Рис. 4.33. Четыре таймера соединены в цепочку для запуска друг друга

Конденсатор емкостью 1 мкФ между контактом сброса и отрицательной шиной будет удерживать вывод сброса в низком состоянии достаточно долго, чтобы подавить начальный импульс таймера. Нагрузочный резистор 10 кОм, также подключенный к выводу сброса, будет поддерживать на нем стабильный потенциал, пока таймер работает.

Судя по моему опыту, этот прием работает хорошо, хотя таймеры различных производителей могут, по-видимому, вести себя различно, поскольку поведение вывода сброса не очень подробно документировано. Если у вас возникают трудности с подавлением импульса, попробуйте увеличить или уменьшить емкость конденсатора.

При соединении таймеров в цепочку возникает другая проблема – подавление импульса работает слишком хорошо. Вы включаете питание, и ничего не происходит, потому что выходные сигналы всех таймеров были подавлены.

Обойти эту проблему можно, убрав подавление импульса только у одного таймера. Он почти наверняка сгенерирует начальный импульс, когда получит питание, и это запустит остальную цепочку. Такая схема изображена на рис. 4.33.

Но,

1 ... 57 58 59 60 61 62 63 64 65 ... 128
Перейти на страницу:
Тут вы можете бесплатно читать книгу Электроника для начинающих (2-е издание) - Чарльз Платт.
Комментарии