Категории
Самые читаемые
PochitayKnigi » Компьютеры и Интернет » Программирование » Программирование на языке Пролог для искусственного интеллекта - Иван Братко

Программирование на языке Пролог для искусственного интеллекта - Иван Братко

Читать онлайн Программирование на языке Пролог для искусственного интеллекта - Иван Братко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 60 61 62 63 64 65 ... 94
Перейти на страницу:

С другой стороны, оценка "суммарное расстояние" допустима: для всех позиций

сумрасст ≤ h*

Доказать это неравенство можно при помощи следующего рассуждения: если мы ослабим условия задачи и разрешим фишкам взбираться друг на друга, то каждая фишка сможет добраться до своего целевого положения по траектории, длина которой в точности равна манхеттеновскому расстоянию между ее начальным и целевым положениями. Таким образом, длина оптимального решения упрощенной задачи будет в точности равна сумрасст. Однако в исходном варианте задачи фишки взаимодействуют друг с другом и мешают друг другу, так что им уже трудно идти по своим кратчайшим траекториям. В результате длина оптимального решения окажется больше либо равной сумрасст.

Упражнение

12.2. Введите в программу поиска с предпочтением, приведенную на рис. 12.3, подсчет числа вершин, порожденных в процессе поиска. Один из простых способов это сделать — хранить текущее число вершин в виде факта, устанавливаемого при помощи assert. Всегда, когда порождаются новые вершины, уточнять это значение при помощи retract и assert. Проведите эксперименты с различными эвристическими функциями задачи "игра в восемь" с целью оценить их эвристическую силу. Используйте для этого вычисленное количество порожденных вершин. 

12.3. Применение поиска с предпочтением к планированию выполнения задач

Рассмотрим следующую задачу планирования. Дана совокупность задач t1, t2, …, имеющих времена выполнения соответственно T1, Т2, …. Все эти задачи нужно решить на  m   идентичных процессорах. Каждая задача может быть решена на любом процессоре, но в каждый данный момент каждый процессор решает только одну из задач. Между задачами существует отношение предшествования, определяющее, какие задачи (если таковые есть) должны быть завершены, прежде чем данная задача может быть запущена. Необходимо распределить задачи между процессорами без нарушения отношения предшествования, причем таким образом, чтобы вся совокупность задач была решена за минимальное время. Время, когда последняя задача в соответствии с выработанным планом завершает свое решение, называется временем окончания плана. Мы хотим минимизировать время окончания по всем возможным планам.

На рис. 12.8 показан пример задачи планирования, а также приведено два корректных плана, один из которых оптимален. Из примера видно, что оптимальный план обладает одним интересным свойством, а именно в нем может предусматриваться "время простоя" процессоров. В оптимальном плане рис. 12.8 процессор 1, выполнив задачу t, ждет в течение двух квантов времени, несмотря на то, что он мог бы начать выполнение задачи t.

Рис. 12.8. Планирование прохождения задач в многопроцессорной системе для 7 задач и 3 процессоров. Вверху показано предшествование задач и величины продолжительности их решения. Например, задача t5 требует 20 квантов времени, причем ее выполнение может начаться только после того, как будет завершено решение трех других задач t1, t2 и t3. Показано два корректных плана: оптимальный план с временем окончания 24 и субоптимальный — с временем окончания 33. В данной задаче любой оптимальный план должен содержать время простоя. Coffman/ Denning, Operating Systems Theory, © 1973, p.86. Приведено с разрешения Prentice-Hall, Englewood Cliffs, New Jersey.

Один из способов построить план можно грубо сформулировать так. Начинаем с пустого плана (с незаполненными временными промежутками для каждого процессора) и постепенно включаем в него задачи одну за другой, пока все задачи не будут исчерпаны. Как правило, на каждом шагу мы будем иметь несколько различных возможностей, поскольку окажется, что одновременно несколько задач-кандидатов ждут своего выполнения. Таким образом, для составления плана потребуется перебор. Мы можем сформулировать задачу планирования в терминах пространства состояний следующим образом:

• состояния — это частично составленные планы;

• преемник частичного плана получается включением в план еще одной задачи; другая возможность — оставить процессор, только что закончивший свою задачу, в состоянии простоя;

• стартовая вершина — пустой план;

• любой план, содержащий все задачи, — целевое состояние;

• стоимость решения (подлежащая минимизации) — время окончания целевого плана;

• стоимость перехода от одного частичного плана к другому равна К2–К1 где К1, К2 — времена окончания этих планов.

Этот грубый сценарий требует некоторых уточнений. Во-первых, мы решим заполнять план в порядке возрастания времен, так что задачи будут включаться в него слева направо. Кроме того, при добавлении каждой задачи следует проверять, выполнены ли ограничения, связанные с отношениями предшествования. Далее, не имеет смысла оставлять процессор бездействующим на неопределенное время, если имеются задачи, ждущие своего запуска. Поэтому мы разрешим процессору простаивать только до того момента, когда какой-нибудь другой процессор завершит выполнение своей задачи. В этот момент мы еще раз вернемся к свободному процессору с тем, чтобы рассмотреть возможность приписывания ему какой-нибудь задачи.

Теперь нам необходимо принять решение относительно представления проблемных ситуаций, т.е. частичных планов. Нам понадобится следующая информация:

(1) список ждущих задач вместе с их временами выполнения;

(2) текущая загрузка процессоров задачами.

Добавим также для удобства программирования

(3) время окончания (частичного) плана, т.е. самое последнее время окончания задачи среди всех задач, приписанных процессорам.

Список ждущих задач вместе с временами их выполнения будем представлять в программе при помощи списка вида

[ Задача1/Т1, Задача2/Т2, ... ]

Текущую загрузку процессоров будем представлять как список решаемых задач, т.е. список пар вида

[ Задача/ВремяОкончания ]

В списке m таких пар, по одной на каждый процессор. Новая задача будет добавляться к плану в момент, когда закончится первая задача из этого списка. В связи с этим мы должны постоянно поддерживать упорядоченность списка загрузки по возрастанию времен окончания. Эти три компоненты частичного плана (ждущие задачи, текущая загрузка и время окончания плана) будут объединены в одно выражение вида

Ждущие * Активные * ВремяОкончания

Кроме этой информации у нас есть ограничения, налагаемые отношениями предшествования, которые в программе будут выражены в форме отношения

предш( ЗадачаX, ЗадачаY)

Рассмотрим теперь эвристическую оценку. Мы будем использовать довольно примитивную эвристическую функцию, которая не сможет обеспечить высокую эффективность управления алгоритмом поиска. Эта функция допустима, так что получение оптимального плана будет гарантировано. Однако следует заметить, что для решения более серьезных задач планирования потребуется более мощная эвристика.

Нашей эвристической функцией будет оптимистическая оценка времени окончания частичного плана с учетом всех ждущих задач. Оптимистическая оценка будет вычисляться в предположении, что два из ограничений, налагаемых на действительно корректный план, ослаблены:

(1) не учитываются отношения предшествования;

(2) делается (не реальное) допущение, что возможно распределенное выполнение задачи одновременно на нескольких процессорах, причем сумма времен выполнения задачи на процессорах равна исходному времени выполнения этой задачи на одном процессоре.

Пусть времена выполнения ждущих задач равны Т1, Т2, …, а времена окончания задач, выполняемых на процессорах — К1, К2, …. Тогда оптимистическая оценка времени ОбщКон окончания всех активных к настоящему моменту, а также всех ждущих задач имеет вид:

 

где m — число процессоров. Пусть время окончания текущего частичного плана равно

 

Тогда эвристическая оценка H (дополнительное время для включения в частичный план ждущих задач) определяется следующим выражением:

if ОбщКон>Кон then H = ОбщКон-Кон else H=0

Программа, содержащая определения отношений, связанных с пространством состояний нашей задачи планирования, приведена полностью на рис. 12.9. Эта программа включает в себя также спецификацию конкретной задачи планирования, показанной на рис. 12.3. Одно из оптимальных решений, полученных в процессе поиска с предпочтением в определенном таким образом пространстве состояний, показано на рис. 12.8.

1 ... 57 58 59 60 61 62 63 64 65 ... 94
Перейти на страницу:
Тут вы можете бесплатно читать книгу Программирование на языке Пролог для искусственного интеллекта - Иван Братко.
Комментарии