Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Теория струн и скрытые измерения Вселенной - Шинтан Яу

Теория струн и скрытые измерения Вселенной - Шинтан Яу

Читать онлайн Теория струн и скрытые измерения Вселенной - Шинтан Яу

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 62 63 64 65 66 67 ... 104
Перейти на страницу:

До сих пор мы говорили о симметрии без упоминания проблемы, с которой столкнулись создатели модели, а именно с тем, что называют нарушением симметрии. В гетеротической версии теории струн мы обсуждали десятимерное пространство-время, с которого мы начинаем, содержащее нечто, что мы называем Е8×Е8-симметрией. Е8 — это 248-мерная группа симметрии, которую можно считать, в свою очередь, калибровочным полем с 248 компонентами (подобно тому как вектор, указывающий некоторое произвольное направление в трехмерном пространстве, имеет три компоненты, обозначаемые x, y и z). Е8×Е8 — это более обширная группа из 496 компонентов (248 + 248), но для практических целей можно игнорировать второе Е8. Конечно, даже 248 симметричных измерений составляют проблему для вывода Стандартной модели, которая имеет только двенадцать симметричных измерений. Значит, нам нужно каким-то способом «отломать» лишние измерения у 248-мерной Е8-группы, уменьшив их количество до двенадцати.

Давайте вернемся к нашему примеру двухмерной сферы, или шара, обладающей вращательной симметрией в трех измерениях и принадлежащей к симметричной группе SO(3). Здесь термин «SO» — это сокращение от «special orthogonal group» (специальная ортогональная группа), поскольку она описывает вращение вокруг взаимно перпендикулярных осей. Можно взять сферу и начать вращать ее вокруг любой из трех осей — x, y и z, — и она всегда будет оставаться той же самой сферой. Но можно нарушить симметрию, если потребовать, чтобы одна точка всегда отображалась сама на себя. На нашей планете можно было бы в качестве такой точки выбрать Северный полюс. После этого у нас останется только один набор преобразований поворота, а именно повороты относительно оси, проходящей через Северный и Южный полюсы, которые оставляют точку Северного полюса неподвижной. В результате трехмерная симметрия шара нарушается и превращается в одномерную симметрию U(1).[160]

Для того чтобы перейти к четырем измерениям и Стандартной модели с ее 12-мерной симметричной группой, следует найти аналогичный способ нарушения симметрии калибровочной группы Е8. Например, можно нарушить симметрию путем выбора определенной конфигурации, включающей или выключающей отдельные компоненты 248-компонентного калибровочного поля. В конце концов, мы найдем способ оставить включенными только двенадцать полей, по аналогии с тем, как, зафиксировав Северный полюс, мы оставили только одно из трех направлений вращения на сфере. Но это не могут быть произвольные двенадцать полей: это должны быть правильные поля, чтобы вписаться в симметричные группы SU(3)×SU(2)×U(1). Другими словами, когда вы закончите разрушать массивную группу Е8, то оставите в четырех измерениях только калибровочные поля Стандартной модели.

Рис. 9.2. Благодаря полной симметрии сфера остается без изменений при вращении вдоль любой оси, проходящей через ее центр. Однако можно нарушить симметрию, если потребовать, чтобы при повороте северный полюс оставался неподвижным. Теперь вращение разрешено только относительно одной оси, проходящей через северный и южный полюсы. Следование этому условию нарушает или ограничивает полную вращательную симметрию сферы

Остальные поля, соответствующие нарушенным симметриям, полностью не исчезают. Они будут проявлять себя только в области очень высоких энергий, что делает их недоступными для нас. Можно сказать, что дополнительные симметрии Е8 спрятаны в Калаби-Яу.

Тем не менее одно лишь многообразие Калаби-Яу само по себе не способно породить Стандартную модель. Здесь и вступают в игру расслоения, которые являются в буквальном смысле расширениями многообразия. Расслоениями называют группы векторов, прикрепленные к каждой точке многообразия. Самый простой тип расслоения известен под названием касательное расслоение. Каждое многообразие Калаби-Яу имеет такое расслоение, но поскольку касательное расслоение Калаби-Яу является более сложным для представления, чем даже само многообразие, то давайте вместо него рассмотрим касательное расслоение обычной двухмерной сферы. Если выбрать точку на поверхности этой сферы и построить два вектора, касательных поверхности сферы в этой точке, то такие векторы определят плоскость или диск в пределах плоскости, если ограничить векторы определенной длиной. Если сделать то же самое в каждой точке поверхности и объединить все эти плоскости или диски вместе, то таким коллективным объектом и будет расслоение. Следует отметить, что расслоение обязательно включает само многообразие, поскольку в расслоение входит, по определению, каждая отдельная точка на поверхности многообразия. По этой причине касательное расслоение двухмерной сферы является четырехмерным пространством, поскольку касательная к поверхности обладает двумя степенями свободы, или двумя независимыми направлениями движения, а также сама по себе сфера, будучи частью расслоения, добавляет еще две степени свободы, которые сами не зависят от касательного пространства.

Рис. 9.3. В каждой точке поверхности сферы существует касательная плоскость, пересекающая сферу только в этой точке и больше нигде. Касательное расслоение для сферы состоит из плоскостей, касательных к каждой точке этой сферы. Поскольку, по определению, касательное расслоение включает каждую точку на сфере, оно также должно включать и саму сферу. Невозможно изобразить касательное расслоение с его бесконечным количеством касательных плоскостей, поэтому мы покажем сферу с кусками касательных плоскостей в нескольких показательных точках

Касательное расслоение шестимерного многообразия Калаби-Яу представляет собой соответственно 12-мерное пространство с шестью степенями свободы в касательном пространстве и шестью степенями свободы в самом многообразии.

Расслоения имеют решающее значение в попытках струнных теоретиков сформулировать физику элементарных частиц в терминах теории Янга-Миллса, где калибровочные поля описываются набором дифференциальных уравнений, называемых, как нетрудно догадаться, уравнениями Янга-Миллса.

Наш следующий шаг состоит, в частности, в поиске решений уравнений для калибровочных полей, живущих на трехмерном многообразии Калаби-Яу. Поскольку основной причиной появления многообразий Калаби-Яу в теории струн было удовлетворение требованиям суперсимметрии, калибровочные поля также должны подчиняться суперсимметрии. Это означает, что мы должны решать специальные суперсимметричные уравнения Янга-Миллса, называемые эрмитовыми уравнениями Янга-Миллса. Эти уравнения дают суперсимметрию с минимальным количеством типов симметрии, которое только можно получить, известную как суперсимметрия N = 1, и это единственная суперсимметрия, которая согласуется с современной физикой элементарных частиц.

«До того как теория струн поразила наше воображение, большинство физиков особо не задумывались о геометрии и топологии, — говорит физик Пенсильванского университета Бёрт Оврут. — Мы просто записывали уравнения типа уравнений Янга-Миллса и пытались их решить». Единственной загвоздкой является то, что эрмитовы уравнения Янга-Миллса являются существенно нелинейными дифференциальными уравнениями, которые никто не может решить. «До сегодняшнего дня, — говорит Оврут, — нет ни одного известного [явного] решения эрмитовых уравнений Янга-Миллса в шестимерном многообразии Калаби-Яу. Следовательно, мы должны были бы остановиться на достигнутом, если бы не работа некоторых геометров, показавших нам иной путь».[161]

Расслоения предлагают нам обходной путь для этого нелинейного дифференциального барьера, поскольку мы можем считать расслоение, прикрепленное к многообразиям Калаби-Яу, альтернативным описанием калибровочных полей, определяемых уравнениями Янга-Миллса. Как это сделать, описывает теорема DUY(ДУЯ), название которой составлено из первых букв фамилий Саймона Дональдсона (Simon Donaldson) (Королевский колледж), Карена Уленбека (Karen Uhlenbeck) (Техасский университет) и моей (Yau).

Идея, лежащая в основе теоремы, заключается в том, что эрмитовы уравнения Янга-Миллса определяют поле, которое может быть представлено векторным расслоением. Мы доказали, что если построить расслоение на Калаби-Яу, которое удовлетворяет конкретному топологическому условию, а именно является устойчивым или технически — с более устойчивым углом наклона (крутизной), то такое расслоение допускает существование уникального калибровочного поля, которое автоматически удовлетворяет этим уравнениям. «Это не имеет смысла, если вы меняете одну чрезвычайно сложную проблему на другую крайне трудную, — отмечает Оврут. — Но вторая проблема создания устойчивого расслоения намного проще, в результате не надо вообще решать эти ужасные дифференциальные уравнения».[162]

1 ... 59 60 61 62 63 64 65 66 67 ... 104
Перейти на страницу:
Тут вы можете бесплатно читать книгу Теория струн и скрытые измерения Вселенной - Шинтан Яу.
Комментарии