Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Научпоп » Книга по химии для домашнего чтения - Борис Степин

Книга по химии для домашнего чтения - Борис Степин

Читать онлайн Книга по химии для домашнего чтения - Борис Степин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 60 61 62 63 64 65 66 67 68 ... 98
Перейти на страницу:

6.29. КАПРИЗНЫЙ КАРБИД

Всегда ли при взаимодействии карбида кальция CaC2 с водой выделяется ацетилен C2H2?

В обычных условиях при действии воды на карбид кальция выделяется ацетилен (см. 9.50):

CaC2 + 2Н2O = Ca(OH)2 + C2H2↑.

Если же карбид кальция нагреть до красного каления и пропускать над ним водяной пар, то вместо ацетилена образуются диоксид углерода CO2 и водород H2:

CaC2 + 5Н2O = CaCO3↓ + CO2↑ + 5Н2↑.

6.30. НОВАЯ МЕТАЛЛУРГИЯ МОНДА

Людовик Монд (1839–1909) — английский химик и промышленник — пришел к выводу, «… что можно было бы извлечь пользу из легкости, с какой никель превращается в летучий газ действием СО…».

Свежевосстановленный никель при нагревании до 50–70°C вступает в необычную реакцию с монооксидом углерода СО:

Ni + 4СО = [Ni(CO)4].

Продукт реакции — комплексное соединение тетракарбонилникель [Ni(CO)4] — тяжелая (тяжелее воды) жидкость, бесцветная, текучая и летучая, как диэтиловый эфир (однако еще более, чем эфир, взрывоопасная). К тому же это вещество ядовито. Однако оно обладает в высшей степени полезным свойством: легко распадается при нагревании на никель и монооксид углерода CO. Сенсационное открытие (см. 9.12) карбонила никеля в 1890 г. вызвало поток новых работ в области химии карбонилов, которые вскоре увенчались открытием карбонила железа [Fe(CO)5] (см. 9.1). Но карбонил кобальта [Co2(CO)8] удалось синтезировать лишь через 20 лет. Ввиду большого различия свойств карбонила никеля и других сопровождающих его металлов (меди, кобальта) удалось использовать это вещество для получения высокочистого никеля, в том числе в виде металлических порошков и пленок.

6.31. «НЕПРАВИЛЬНОЕ» ПЛАВЛЕНИЕ ЖЕЛЕЗА

Температура плавления железа, по справочным, данным, составляет 1530°C. Однако зона расплавления в доменном процессе приходится на температуру 1100–1200°C.

Доменный процесс характеризуется наличием в сырье большого количества углеродсодержащих материалов (кокса, карбонатов, монооксида углерода, диоксида углерода), поэтому, строго говоря, плавится при 1100–1200°C не чистое железо Fe, а его смеси с углеродом. Так, реакции восстановления железа из магнетита Fe3O4 начинаются уже при 400°C в верхней части домны и продолжаются в более низких областях доменной шахты (900°C):

Fe3O4 + 2С = 3Fe + 2СO2.

Образующееся в этих условиях железо имеет губчатую структуру, причем на его весьма развитой поверхности происходит каталитически ускоренный распад монооксида углерода СО:

2СO ↔ СO2 + С.

Углерод поглощается железом, частично превращаясь в карбид железа Fe3C — цементит (см. 3.45):

3Fe + C = Fe3C,

а частично — растворяясь в массе металлического железа. Подобные процессы идут и при непосредственном контакте железа с коксом. В результате этого температура плавления железа снижается: каждый процент поглощенного углерода дает почти 100-градусное снижение температуры плавления. В результате смесь железа с углеродом, содержащая 4% углерода, плавится при 1080°C. Затвердевание этой смеси дает сплав, который называют чугуном.

6.32. «ВОДОРОДНАЯ ЧУМА» ЖЕЛЕЗА

Французский химик Сент-Клер-Девилль (см. 4.51) после многолетних наблюдений сделал в 1863 г. вывод о том, что железо и сталь «не держат водород, а становятся при определенных условиях проницаемыми для этого легчайшего элемента» (см. 5.85). Неожиданные разрывы стволов артиллерийских орудий, аварии химического оборудования для процесса синтеза аммиака NH3, где используется водород; наконец, некоторые авиационные катастрофы — все это следствия «водородной чумы» железа. Причина в том, что водород, особенно атомарный, активно реагирует с карбидами железа — в частности, с цементитом, упрочняющим стальные изделия:

Fe3C + 4H0 = 3Fe + CH4↑.

При этом структура металла изменяется, а его прочность резко падает. Надежное средство борьбы с этим вредным явлением найдено лишь в 30-х годах нашего столетия: предложено легировать стали, работающие в контакте с водородом и его соединениями, такими металлами, как титан Ti, ванадий V и молибден Mo. В этом случае в сплаве присутствуют не карбиды железа, а карбиды добавленных в сталь примесных металлов, которые устойчивы к водороду.

6.33. КАК РЖАВЕЕТ АЛЮМИНИЙ

Разрушается ли на воздухе металлический алюминий? Судя по тому, что бытовая алюминиевая посуда служит годами и даже десятилетиями…

Разрушение алюминия на воздухе возможно только тогда, когда устранена самозащита металла — уничтожена пассивирующая пленка на его поверхности. Очистим изделие из алюминия от следов жира и масла и погрузим в водный раствор нитрата ртути Hg(NO3)2:

2Al + 3Hg(NO3)2 = 2Al(NO3)3 + 3Hg↓.

Алюминий вытесняет ртуть из ее соли, и на поверхности изделия появляется тонкий слой амальгамы — раствора алюминия в ртути (см. 5.44), разрушающий пассивирующую пленку. Алюминий, растворенный в ртути, взаимодействует с влагой и кислородом воздуха, превращаясь в тонкий белый порошок или белые хлопья метагидроксида алюминия:

4Al + 2Н2O + 3O2 = 4AlO(OH).

Израсходованный в реакции металл пополняется новыми порциями растворяющегося в ртути алюминия — вплоть до того момента, когда вместо алюминия останется лишь его метагидроксид, содержащий мельчайшие капельки ртути.

Если амальгамированный алюминий погрузить в воду, то начинается выделение водорода:

2Al + 4Н2O = 2 AlO(OH) + 3Н2↑.

6.34. «ХИМИЧЕСКАЯ ЧИСТКА» ОТ РЖАВЧИНЫ

При травлении стальных изделий с помощью хлороводородной кислоты HCl ржавчина [оксид Fe2O3 и метагидроксид железа FeO(OH)] переходят в раствор в виде трихлорида железа FeCl3:

Fe2O3 + 6HCl = 2FeCl3 + 3H2O, FeO(OH) + 3HCl = FeCl3 + 2Н2O.

Если после травления деталь недостаточно хорошо промыта, то оставшийся на поверхности FeCl3 снова вызовет коррозию; хлорид железа — вещество гигроскопичное, поглощая влагу из воздуха, он подвергается гидролизу:

FeCl3 + H2O ↔ Fe(OH)Cl2 + HCl

(см. 6.22). Это действует так же, как обработка металла хлороводородной кислотой — идеальные условия для коррозии! Чтобы при Травлении металла с хлороводородной кислотой взаимодействовала только ржавчина, но не очищаемый материал, в травильный раствор рекомендуют добавлять ингибиторы — вещества, тормозящие процесс взаимодействия железа с кислотами, например уротропин или гексаметилентетрамин (CH2)6N4 (см. 5.64). Тончайшая пленка ингибитора обволакивает только поверхность металла и предохраняет ее от контакта с кислотой, а ржавчина остается незащищенной и беспрепятственно растворяется.

6.35. ТОРМОЗ ТРАВЛЕНИЯ

Разве обязательно для удаления ржавчины с железных деталей использовать хлороводородную кислоту?

Для этой же цели можно использовать, например, ортофосфорную кислоту H3PO4, а иногда и азотную кислоту HNO3. Если хотят провести постепенное травление, готовят кислотную пасту. Для этого картофельный крахмал смачивают водой, а потом добавляют в полученную массу кислоту. После снятия остатков пасты по окончании травления следует обработать поверхность металла раствором гидрокарбоната натрия NaHCO3 (питьевой содой), это поможет удалению остатков кислоты:

3NaHCO3 + H3PO4 = Na3PO4 + 3Н2O + 3CO2↑.

6.36. ЧЕРНОЕ ЗОЛОТО?

Если на золотое кольцо попал иод, оно чернеет. Как его очистить?

Иод взаимодействует с золотом Au уже при обычных условиях:

2Au + I2 = 2AuI.

Черный моноиодид золота AuI восстанавливается гидросульфитом натрия:

2AuI + NaHSO3 + H2O = 2Au + NaHSO4 + 2HI.

Поэтому если подействовать на загрязненное место раствором NaHSO3, то через 10–15 минут кольцо посветлеет.

6.37. НЕНУЖНЫЙ МАЛАХИТ

Медная посуда и бронзовые изделия покрываются со временем зеленым налетом.

В воздухе всегда присутствуют влага и диоксид углерода CO2. Взаимодействуя с ними, медь Cu превращается в гидроксид-карбонат меди Cu2(OH)2(CO3) зеленого цвета:

2Cu + O2 + H2O + CO2 = Cu2(OH)2(CO3).

Это вещество тождественно известному зеленому минералу малахиту (см. 10.25). Если надо очистить изделие от зеленого налета, следует подержать его в водном растворе аммиака NH3:

1 ... 60 61 62 63 64 65 66 67 68 ... 98
Перейти на страницу:
Тут вы можете бесплатно читать книгу Книга по химии для домашнего чтения - Борис Степин.
Комментарии