Апология математики (сборник статей) - Владимир Андреевич Успенский
Шрифт:
Интервал:
Закладка:
Здесь существенна заключённая в скобки оговорка «в том виде, в каком мы понимаем пространство». Имеется в виду стандартное, школьное понимание пространства. Математики, однако, обнаружили теоретическую возможность существования такой формы трёхмерного пространства, что поменять местами правую и левую части тела можно и без выхода за его пределы. При стандартном, школьном понимании формы окружающего нас трёхмерного пространства действительно никаким перемещением в этом пространстве невозможно превратить кисть правой руки в кисть левой руки. Но это невозможно именно при стандартном, школьном понимании. Существуют, однако, иные формы пространства, допускающие такое перемещение. Попытаемся разъяснить, как такое может быть.
Как справедливо замечает Уэллс, вырезанный из бумаги силуэт правой ладони невозможно превратить в силуэт левой ладони, ограничиваясь перемещением по плоской поверхности стола; чтобы это сделать, надо поднять силуэт над столом, т. е. выйти в третье измерение, перевернуть силуэт и снова положить на стол.
Существуют, однако, такие поверхности, при перемещении по которым правое может превратиться в левое, а левое – в правое. Самой простой и самой известной из таких поверхностей является лист Мёбиуса (Möbius strip) или – как эту поверхность называли в добрые старые времена – лента Мёбиуса (Möbius band). Лента Мёбиуса показана на рис. 19. Знаменитый голландский художник Эшер (Мaurits Cornelis Escher, 1898–1972) увековечил ленту Мёбиуса в своём параде муравьёв, ползущих по ней друг за другом (рис. 20). Изображение ленты Мёбиуса можно встретить на обложках математических изданий и значках математических сообществ (в частности, на значке мехмата МГУ).
При желании читатель может сам изготовить ленту Мёбиуса. Сделать это просто. Если взять бумажную или матерчатую ленту и склеить её торцы, то полученная поверхность будет боковой поверхностью цилиндра. Если же при этом ленту перекрутить, т. е., удерживая неподвижным один конец ленты, другой конец повернуть перед склеиванием на 180°, как раз и получится лента Мёбиуса. Сказанное иллюстрирует рис. 21. Если взять ленту с двумя длинными сторонами AC и BD и двумя короткими, торцевыми, сторонами AB и CD (рис. 21, а) и склеить торцы AB и CD без перекручивания, точка A склеится с точкой C, а точка B – с точкой D, и получится боковая поверхность цилиндра. Если же A склеить с D, а B – с C, получим ленту Мёбиуса (рис. 21, б). Случается, что, подпоясавшись и застегнув ремень, вы обнаруживаете, что ремень перекрутился; такой перекрученный и застёгнутый ремень может служить примером ленты Мёбиуса[97]. Боковая поверхность цилиндра имеет два края, лента же Мёбиуса – только один (подобно тому, как один край имеет круг).
Самое же замечательное, что лента Мёбиуса имеет всего лишь одну сторону. Муравей, ползущий по одной стороне вырезанного из плоскости круга, не может перейти на другую его сторону, не переползя через край. Тот же муравей, ползающий по внешней стороне сферы, не может попасть внутрь сферы, не прогрызя её насквозь; а если он ползёт по внутренней стороне сферы, то точно так же должен её прогрызть, чтобы вырваться наружу. И поверхность в виде круга, и поверхность в виде сферы имеют каждая по две стороны. Иное дело лента Мёбиуса. Пусть теперь наш муравей ползает по ней. Проделаем такой мысленный эксперимент. Сделаем клон муравья и пустим его ползти, оставив исходного, клонированного, муравья на месте. Мы обнаружим, что, следуя определённым маршрутом, клон достигнет того же места ленты, что и клонированный муравей, но только оба насекомых окажутся в положении антиподов по отношению друг к другу: каждый относительно другого будет обращен спиной вниз. Лист бумаги можно закрасить с одной стороны в чёрный цвет, оставив другую его сторону незакрашенной. Точно так же и боковую поверхность цилиндра, и сферу можно выкрасить с одной стороны, оставив другую незакрашенной. Поступить так с лентой Мёбиуса не удастся. И плоскость, и её кусок, и поверхность цилиндра, и сфера суть поверхности двусторонние. Лента же Мёбиуса является односторонней поверхностью.
Феномен ленты Мёбиуса был обнаружен в 1858 г. Первооткрывателем его стал уже известный нам по предыдущей главе Листинг; ему же принадлежит и первое сообщение в печати. Однако описание свойств этой поверхности первым дал другой немецкий математик – Август Фердинанд Мёбиус (August Ferdinand Möbius, 1790–1868). Среди его предков со стороны матери был Лютер, а среди учителей – Гаусс. Память Мёбиуса увековечена не только в названии знаменитой поверхности, но также в названии кратера на обратной стороне Луны и астероида 28516. Дело в том, что, хотя основные его научные труды – труды замечательные, высоко оценённые Гауссом – относились к области математики, по должности он был астроном – профессор астрономии Лейпцигского университета (и в качестве такового внёс заметный вклад в эту науку двумя монографиями по теоретической астрономии). Преподавал же он в основном механику. Начинал Мёбиус младшим сотрудником астрономической обсерватории, причём утверждают, что он согласился на такую скромную работу из-за низкой самооценки. Его скромность, впрочем, была вознаграждена, потому что директором астрономической обсерватории в Гёттингене оказался не кто иной, как Гаусс.
В предыдущей главе была приведена предложенная Мёбиусом в 1840 г. задача, аттестующая его как одного из пионеров геометрии положения. За десять лет до кончины Мёбиус представил рукопись об односторонних поверхностях (в частности, о той, которая была впоследствии названа его именем) в Парижскую академию наук (как неофициально именовалась Французская академия естественных наук). Академия эта, увы, была печально известна тем, что присланные рукописи подчас пылились на полках и никто их не читал. А иногда они и пропадали[98]. Слава богу, рукопись Мёбиуса не пропала и после его смерти была обнаружена.
Другое свойство ленты Мёбиуса особенно важно для нашего изложения. Оно состоит в так называемой неориентируемости. Лента Мёбиуса, как и всякая поверхность, не имеет толщины. Если на какой-то поверхности изображён силуэт ладони, то невозможно сказать, правая она или левая: это зависит от того, с какой стороны посмотреть. Сказанное верно и для ленты Мёбиуса. (Читатель да не смутится употреблением здесь слова «сторона». Лента Мёбиуса в целом является односторонней, но тот малый её участок, на котором изображена ладонь, – двусторонний, и как ни гуляй по нему, своим антиподом не станешь.) Если рядом изображены две ладони, то можно сказать, одинаковы ли они, или же одна есть зеркальное отражение другой. Так вот, можно