Категории
Самые читаемые

Параллельные миры - Мичио Каку

Читать онлайн Параллельные миры - Мичио Каку

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 64 65 66 67 68 69 70 71 72 ... 95
Перейти на страницу:

Линзы Эйнштейна можно также использовать в качестве объеквного метода измерения количества массивных компактных объектов гало (МАСНО) во вселенной (которые состоят из обычного щества, такого, как мертвые звезды, коричневые карлики и пылевые блака). В 1986 году Богдан Пачински из Принстона понял, что в кучае, если массивные компактные объекты гало проходят перед здой, они тем самым увеличивают ее яркость и создают второе ее ображение.

В начале 1990-х годов несколько групп ученых (в частности, французкая группа EROS, американо-австралийская группа МАСНО и польско-американская группа OGLE) воспользовались этим методом для изучения центра Галактики Млечный Путь и обнаружили более пятисот микролинзовых событий (этот результат превзошел ожидания, поскольку некоторое количество этого вещества состояло из звезд с малой массой и неистинных массивных компактных объектов гало). Этот же метод может применяться для обнаружения экстрасолнечных планет, вращающихся вокруг других звезд. Поскольку планета оказывала бы очень малое, но измеримое гравитационное воздействие на свет материнской звезды, линзирование Эйнштейна принципе могло бы их обнаружить. При помощи этого метода уже было выявлено небольшое количество кандидатов в экстрасолнечные планеты, некоторые из них располагаются у центра Млечного Пути.

При помощи линз Эйнштейна можно измерить даже постоянную Хаббла и космологическую константу. Постоянная Хаббла измеряется путем тщательного наблюдения. Квазары становятся ярче и тускнеют с течением времени. Можно было бы ожидать, что двойные квазары, будучи изображениями одного и того же объекта, мерцали бы в унисон. Используя имеющиеся данные о распределении вещества во вселенной, астрономы могут вычислить долю задержки во времени, потребовавшемся свету, чтобы достичь Земли. Измерив отставание во времени, когда двойные квазары становятся ярче, можно определить, на каком расстоянии от Земли они находятся. Зная же их красное смещение, можно вычислить постоянную Хаббла. (Именно такой метод был использован применительно к квазару Q0957+561, расстояние до которого оказалось равно приблизительно 14 млрд световых лет от Земли. С тех пор постоянная Хаббла была определена путем изучения семи других квазаров. В пределах погрешности полученные при таком изучении результаты совпали с уже имеющимися данными. Интересным отличием этого метода является то, что он совершенно не зависит от яркости звезд (таких, как цефеиды и сверхновые типа 1а), что подчеркивает объективность полученных результатов.)

Этим способом можно измерить и космологическую константу, в которой, возможно, заключен ключ к будущему нашей вселенной. Такой способ вычисления немного неточен, но в принципе, результаты совпадают с данными, полученными при применении других методов. Поскольку миллиарды лет тому назад суммарный объем вселенной был меньше, вероятность обнаружения квазаров, образующих линзу Эйнштейна, в прошлом также была большей. Таким образом, определив количество двойных квазаров на различных этапах эволюции вселенной, можно вычислить приблизительный объем вселенной, а отсюда — космологическую константу, которая движет расширением вселенной. В 1998 году астрономы из Гарвард- Смитсоновского астрофизического центра осуществили первое приблизительное вычисление космологической константы и пришли к выводу, что она, вероятно, составляет не более 62 % от суммарного содержимого вещества/энергии вселенной. (Действительный результат, полученный при помощи спутника WMAP, составляет 73 %.)

Темное вещество у вас в гостиной

Если вселенная заполнена темным веществом, то оно существует не только в холодном космическом вакууме. В сущности, темное вещество можно также обнаружить и у вас в гостиной. Сегодня несколько исследовательских групп соревнуются за первенство в поимке частицы темного вещества в лаборатории. Ставки высоки: ученые той группы, которой удастся поймать частицу темного вещества, проносящуюся сквозь детектор, окажутся первыми, кто открыл новую форму вещества за две тысячи лет.

Основная идея этих экспериментов заключается в следующем: необходим большой кусок чистого материала (такого, как йодид натрия, оксид алюминия, фреон, германий или кремний), в котором может происходить взаимодействие частиц темного вещества. Время от времени частица темного вещества может сталкиваться с ядром атома, создавая характерную картину распада. Фотографируя следы частиц, участвующих в этом распаде, ученые смогут подтвердить присутствие темного вещества.

Экспериментаторы полны сдержанного оптимизма, поскольку находящееся в их распоряжении чувствительное оборудование предоставляет им наилучшую возможность для наблюдения темного вещества. Наша Солнечная система вращается по орбите вокруг черной дыры в центре Галактики Млечный Путь со скоростью 220 километров в секунду. В результате этого наша планета проходит сквозь значительное количество темного вещества. Согласно расчетам физиков, миллиард частиц темного вещества в секунду пролетает сквозь каждый квадратный метр нашего мира, в том числе сквозь наши тела.

Хотя мы живем в «ветре темного вещества», дующем сквозь нашу Солнечную систему, лабораторные эксперименты по обнаружению темного вещества чрезвычайно сложны из-за того, что частицы темного вещества вступают в столь слабое взаимодействие с обычным веществом. Так, ученые ожидают за год обнаружить от 0,01 до 10 событий, происходящих в килограмме материала, наблюдающегося в лаборатории. Иными словами, пришлось бы многие годы внимательно наблюдать за большими количествами материала, чтобы увидеть события, имеющие отношение к столкновениям темного вещества.

До сих пор в ходе таких экспериментов, как UKDMC в Великобритании, ROSEBUD в Канфранке (Испания), HIE в Рустреле (Франция) и Edelweiss в городе Фрежус (Франция), подобных событий обнаружено не было. Эксперимент под названием 111 (ot Dark Matter- «темное вещество»), проводившийся неподалеку от Рима, вызвал шумиху в 1999 году, когда ученые заявили, что наблюдали частицы темного вещества. Поскольку в детекторе DAMA используется 100 килограммов йодида натрия, он является самым большим в мире. Однако попытки воспроизвести тот же результат при помощи других детекторов не увенчались успехом — не было обнаружено ничего; и это бросило тень сомнения на данные, полученные в ходе эксперимента DAMA.

Физик Дэвид Б. Клайн замечает: «Если детекторы уловят и подтвердят сигнал, то это станет одним из крупнейших достижений двадцать первого столетия… Вскоре может разрешиться величайшая загадка современной астрофизики».

Если надежды физиков оправдаются и темное вещество вскоре будет обнаружено, то оно может представить доказательство в пользу суперсимметрии (а вероятно, с течением времени и в пользу теории суперструн) без использования ускорителей частиц.

SUSY — суперсимметричное темное вещество

Беглый взгляд на частицы, существование которых предсказывает супер симметрия, показывает, что есть несколько потенциальных претендентов на объяснение тайны темного вещества. Одним из них является нейтралино, семейство частиц, куда входит суперпартнер фотона. С теоретической точки зрения нейтралино, кажется, соответствует имеющимся данным. Нейтралино не только имеет нейтральный заряд, а потому невидимо, — оно также массивно (а потому на него воздействует только гравитация), а кроме того, оно стабильно. (Такая ситуация складывается потому, что нейтралино обладает наименьшей массой из всех частиц семейства, к которому оно принадлежит, а потому оно не может распадаться до каких-то более легких частиц). И наконец, последним и, вероятно, важнейшим моментом является то, что во вселенной должно быть полно ней-гралино, что делает их идеальными претендентами на роль темного вещества.

У нейтралино есть одно веское преимущество: они, возможно, способны разрешить загадку, почему темное вещество составляет Ј3 % вещественно-энергетического содержимого вселенной, в то даремя как водород и гелий отвечают лишь за какие-то жалкие 4 %.

Вспомним о том, что когда Вселенной было 380 ООО лет, температура продолжала снижаться до тех пор, пока атомы уже не разрывало на части при столкновениях, вызванных невероятным жаром Большого Взрыва. В то время изначальный огненный шар начал остывать, конденсироваться и образовывать устойчивые целые атомы. Общее количество атомов восходит приблизительно к тому временному отрезку. Вывод таков: относительное содержание вещества во Вселенной складывалось в то время, когда Вселенная достаточно остыла, чтобы это вещество могло стать стабильным.

Этот же самый аргумент можно использовать при подсчете относительного содержания нейтралино. Сразу после Большого Взрыва температура была настолько высока, что даже нейтралино уничтожались при столкновениях. Однако по мере остывания Вселенной, некоторое время спустя, температура снизилась достаточно, чтобы стало возможным образование нейтралино без их последующего уничтожения. Относительное содержание нейтралино во Вселенной надо искать именно в той ранней эпохе. Осуществляя это вычисление, мы обнаруживаем, что относительное содержание нейтралино намного выше содержания атомов и, в сущности, приблизительно соответствует процентному содержанию темного вещества в настоящее время. Таким образом, суперсимметричные частицы могут объяснить, почему настолько высоко относительное содержание темного вещества во Вселенной.

1 ... 64 65 66 67 68 69 70 71 72 ... 95
Перейти на страницу:
Тут вы можете бесплатно читать книгу Параллельные миры - Мичио Каку.
Комментарии