Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Краткая история времени. От Большого Взрыва до черных дыр - Стивен Хокинг

Краткая история времени. От Большого Взрыва до черных дыр - Стивен Хокинг

Читать онлайн Краткая история времени. От Большого Взрыва до черных дыр - Стивен Хокинг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 11
Перейти на страницу:

Четыре координаты какого-либо события можно рассматривать как координаты, определяющие положение этого события в четырехмерном пространстве, которое называется пространством-временем. Четырехмерное пространство представить себе невозможно. Лично я с трудом представляю себе даже трехмерное пространство! Но нетрудно изображать графически двумерные пространства, например поверхность Земли. (Поверхность Земли двумерна, потому что положение любой точки можно задать двумя координатами – широтой и долготой.) На диаграммах, которыми я буду, как правило, пользоваться, ось времени направлена вверх, а одна из пространственных осей горизонтальна. Два других пространственных измерения либо будут отсутствовать, либо же одно из них я буду иногда изображать в перспективе. (Такие диаграммы, как диаграмма рис. 2.1, называются пространственно-временными.) Например, на рис. 2.2 ось времени направлена вверх и отсчет на ней ведется в годах, а расстояние от Солнца до звезды альфа Центавра отложено по горизонтальной оси и измеряется в милях. Траектории Солнца и альфы Центавра, возникающие при их перемещении в пространстве-времени, показаны на диаграмме вертикальными линиями: первая – слева, а вторая – справа. Луч света от Солнца распространяется по диагонали, и он доходит от Солнца до альфы Центавра за четыре года.

Рис. 2.2

Мы видели, что уравнения Максвелла предсказывают постоянство скорости света независимо от скорости источника и эти предсказания подтверждаются точными измерениями. Отсюда следует, что световой импульс, испущенный в некоторый момент времени из некоторой точки пространства, с течением времени будет распространяться во все стороны, превращаясь в световую сферу, размеры и положение которой зависят от скорости источника. Через одну миллионную долю секунды свет образует сферу радиусом 300 метров; через две миллионные доли секунды радиус сферы увеличится до 600 метров и т. д. Картина будет напоминать волны на воде, расходящиеся по поверхности пруда от брошенного камня. Эти волны расходятся, как круг, расширяющийся со временем. Если представить себе трехмерную модель, два измерения которой на поверхности пруда, а одно – ось времени, то в такой модели расходящийся по воде круг будет «следом» конуса с вершиной, находившейся в момент падения камня в той точке на поверхности пруда, в которой камень коснулся воды (рис. 2.3). Точно так же свет, распространяясь из некоего события в четырехмерном пространстве-времени, образует в нем трехмерный конус. Этот конус называется световым конусом будущего для данного события. Можно нарисовать и другой конус, который называется световым конусом прошлого и представляет множество событий, из которых световой импульс может попасть в точку, соответствующую данному событию (рис. 2.4).

Рис. 2.3

Рис. 2.4

Рис. 2.5

Световые конусы прошлого и будущего для данного события Р делят пространство-время на три области (рис. 2.5). Абсолютное будущее данного события – это область, заключенная внутри светового конуса будущего события Р. Это совокупность всех событий, на которые в принципе может повлиять то, что происходит в точке Р. События, лежащие вне светового конуса события Р, недостижимы для сигналов, идущих из точки Р, так как ничто не может двигаться быстрее света. Следовательно, на них никак не сказывается происходящее в точке Р. Абсолютное прошлое событие Р лежит внутри светового конуса прошлого. Это множество всех событий, сигналы от которых, распространяющиеся со скоростью света или с меньшей скоростью, могут попасть в точку Р. Таким образом, в конусе прошлого лежит множество всех событий, которые могут влиять на событие в точке Р. Зная, что́ происходит в какой-то момент времени всюду в той области пространства, которая ограничена световым конусом прошлого события Р, можно предсказать, что́ должно произойти в самой точке Р. Область пространства, не лежащую внутри световых конусов прошлого и будущего, мы будем называть внешней. События, принадлежащие внешней области, не могут ни сами влиять на события в точке Р, ни оказаться под влиянием происходящих в Р событий. Если, например, Солнце прямо сейчас вдруг перестанет светить, то в настоящий момент это никак не повлияет на земную жизнь, так как мы всё еще будем находиться в области, внешней по отношению к той точке, в которой Солнце потухло (рис. 2.6), а узнаем обо всем лишь через восемь минут – время, за которое свет от Солнца достигает Земли. Только тогда происходящие на Земле события попадут в световой конус будущего той точки, в которой Солнце потухло. По той же причине мы не знаем, что́ в данный момент происходит далеко во Вселенной: дошедший до нас свет далеких галактик был испущен миллион лет назад, а свет от самого далекого наблюдаемого объекта шел к нам 8 тысяч миллионов лет. Это значит, что, всматриваясь во Вселенную, мы видим ее в прошлом.

Рис. 2.6

Если пренебречь гравитационными эффектами, как это сделали в 1905 г. Эйнштейн и Пуанкаре, то мы придем к так называемой специальной (или частной) теории относительности. Для каждого события в пространстве-времени мы можем построить световой конус (представляющий собой множество всех возможных путей, по которым распространяется свет, испущенный в рассматриваемой точке), а поскольку скорость света одинакова для любого события и в любом направлении, все световые конусы будут одинаковы и ориентированы в одном направлении. Кроме того, эта теория говорит нам, что ничто не может двигаться быстрее света. Это означает, что траектория любого объекта во времени и в пространстве должна представляться линией, лежащей внутри световых конусов для всех событий на ней (рис. 2.7).

Рис. 2.7

Специальная теория относительности позволила объяснить постоянство скорости света для всех наблюдателей (установленное в опыте Майкельсона и Морли) и правильно описывала, что́ происходит при движении со скоростями, близкими к скорости света. Однако новая теория противоречила ньютоновской теории гравитации, согласно которой объекты притягиваются друг к другу с силой, зависящей от расстояния между ними. Последнее означает, что если сдвинуть один из объектов, сила, действующая на другой, изменится мгновенно. Иначе говоря, скорость распространения гравитационных эффектов должна быть бесконечной, а не равной (или меньшей) скорости света, как того требовала теория относительности. В 1908–1914 гг. Эйнштейн предпринял ряд безуспешных попыток построить такую модель гравитации, которая согласовалась бы со специальной теорией относительности. Наконец в 1915 г. он опубликовал теорию, которая сейчас называется общей теорией относительности.

Эйнштейн высказал предположение революционного характера: гравитация – это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось раньше; оно искривлено распределенными в нем массой и энергией. Такие тела, как Земля, вовсе не принуждаются двигаться по искривленным орбитам гравитационной силой; они движутся по линиям, которые в искривленном пространстве более всего соответствуют прямым в обычном пространстве и называются геодезическими. Геодезическая – это самый короткий (или самый длинный) путь между двумя соседними точками. Например, поверхность Земли есть искривленное двумерное пространство. Геодезическая на Земле называется большим кругом и является самым коротким путем между двумя точками (рис. 2.8). Поскольку самый короткий путь между двумя аэропортами по геодезической, диспетчеры всегда задают пилотам именно такой маршрут. Согласно общей теории относительности, в четырехмерном пространстве-времени тела всегда перемещаются по прямым, но мы видим, что в нашем трехмерном пространстве они движутся по искривленным траекториям. (Понаблюдайте за самолетом над холмистой местностью: сам он летит по прямой в трехмерном пространстве, а его тень перемещается по кривой на двумерной поверхности Земли.)

Рис. 2.8

Масса Солнца так искривляет пространство-время, что, хотя Земля в четырехмерном пространстве движется по прямой, мы видим, что в нашем трехмерном пространстве она движется по круговой орбите. Орбиты планет, предсказываемые общей теорией относительности, почти совпадают с предсказаниями ньютоновской теории тяготения. Однако что касается Меркурия, который, будучи ближайшей к Солнцу планетой, испытывает самое сильное действие гравитации и имеет довольно вытянутую орбиту, то общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца примерно на один градус в десять тысяч лет. Несмотря на его малость, этот эффект был замечен еще до 1915 г. и рассматривался как одно из подтверждений теории Эйнштейна. В последние годы радиолокационным методом были измерены еще меньшие отклонения орбит других планет от предсказаний Ньютона, и они согласуются с предсказаниями общей теории относительности.

1 2 3 4 5 6 7 8 9 10 11
Перейти на страницу:
Тут вы можете бесплатно читать книгу Краткая история времени. От Большого Взрыва до черных дыр - Стивен Хокинг.
Комментарии