Категории
Самые читаемые
PochitayKnigi » Разная литература » Газеты и журналы » Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Вязовский

Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Вязовский

Читать онлайн Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Вязовский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 66 67 68 69 70 71 72 73 74 ... 361
Перейти на страницу:
картину молекулы? Нет, это было бы неверно. Правдивость самой картины отнюдь не является ее главным достоинством. Важно, чтобы наша модель молекулы хорошо «работала». А «хорошо работать» — это значит быстро и надежно предсказывать. Как бы точна ни была модель, но если «работать» с ней трудно, то мы задумаемся о другой, пусть более грубой, но зато более «работоспособной» модели.

Именно поэтому при изучении геометрии и механики молекулы мы отдаем предпочтение атомной модели. Сделать расчеты с помощью электронно-ядерной модели молекулы оказывается в этом случае нереалистичным, когда речь идет об интересующих нас проблемах: слишком много взаимодействующих частиц.

В то же время атомная модель молекулы позволяет истолковать и предсказать большую совокупность явлений.

В механической модели молекулы мы «забываем» про электроны и рассматриваем атом как кирпич мироздания. В механической модели за структуру и свойства молекулы отвечают взаимодействия атомов.

Модель молекулы можно нарисовать на бумаге, изготовить из проволоки, из шариков на пружинках… Существует множество типов моделей. Подходящим масштабом является сто миллионов. Размеры молекул указывают обычно в ангстремах. Один ангстрем — это стомиллионная доля сантиметра. Расстояния между центрами атомов лежат в границах 1–2 ангстрема. Поэтому и удобен стомиллионный масштаб: расположив центры «атомов» на расстояниях один-два сантиметра, мы легко разглядим детали строения, да и изготовлять шарики и срезы шариков (зачем нужны срезы, мы скажем ниже) такого размера вполне удобно.

В зависимости от целей и от личных вкусов используют те или иные модели. Пока что остановимся на скелетных моделях, то есть таких, в которых показаны (стерженьками) силы, соединяющие атомы в молекулу. Эти силы называют химическими, или валентными. О том, какие атомы с какими связаны, химики научились судить по химическим реакциям еще задолго до того, как физики научились устанавливать структуру молекулы своими методами.

Итак, обратившись за указанием к химику, мы получаем от него сведения о том, как атомы присоединены друг к другу. Скажем, формула молекулы этилового спирта С2Н5ОН еще ничего не говорит о том, как соединены атомы между собой. Эта формула — так называемая брутто формула сообщает лишь сведения о составе. Разъясняя строение молекулы химик укажет нам: три атома водорода (рис. 1) соедините черточками с атомом углерода. (Эта группа атомов называется метильной.)

Теперь, пожалуйста, соедините валентной черточкой атом углерода этой группы со вторым атомом углерода. Этот второй атом, кроме того, надо связать с парой атомов водорода, а четвертую черточку (раз четыре черточки от одного атома, значит, он четырехвалентный) приведите к атому кислорода. Оставшийся атом водорода следует присоединить к атому кислорода.

Физик сразу же задаст вопрос. А на каком расстоянии атомы, под какими углами друг к другу идут валентные черточки? На подобные вопросы ответы могут быть получены физическими исследованиями. Оставим пока что в стороне вопрос о том, каким образом устанавливается физическими опытами геометрия молекулы. Обширные данные собраны в толстые справочники. В них можно найти сведения о том, на каких расстояниях находятся химически связанные атомы и какие углы (их называют валентными углами) образуют между собой «стерженьки», символизирующие химические валентные силы. Если не очень придираться к тонким различиям, то окажется, что расстояния между атомами одного сорта достаточно универсальны, правда, валентные углы более переменчивы. Поэтому предсказать структуру молекулы не всегда просто. Но об этом речь будет впереди.

Теперь мы можем обратиться к проблеме межмолекулярных сил.

То, что между молекулами действуют силы, очевидно из самых элементарных соображений. Пар любого вещества при подходящих условиях сгущается в каплю. Если так, то молекулы несомненно притягиваются. Вещество сопротивляется сжатию. Значит, находясь на малых расстояниях, молекулы отталкиваются друг от друга. Если на больших расстояниях существует притяжение, а на малых отталкивание, значит, есть и равновесное состояние, когда эти силы уравновешиваются.

Вместо сил взаимодействия гораздо удобнее говорить об энергии взаимодействия[130]. Энергию взаимодействия и мерить легче, и понятие это более простое и ясное, чем сила.[131] Энергией взаимодействия молекул (или атомов, или любых других частиц или тел) называется работа, которую нужно затратить для того, чтобы развести частицы далеко друг от друга — так, чтобы взаимодействие прекратилось. Математик скажет — отдалить на бесконечно большое расстояние. Чем ближе частицы, тем больше работа, необходимая для того, чтобы их оторвать друг от друга. Максимального значения эта работа достигает тогда, когда частицы находятся на равновесном расстоянии друг от друга. Эту работу называют энергией связи. Если частицы сжаты и отталкиваются, то есть находятся на расстоянии меньше равновесного, то работа разрыва станет, конечно, меньше.

Типичная кривая энергии взаимодействия показана на рисунке 2.

Все кривые имеют такой характер. Но для конкретных целей надо знать параметры кривой. Прежде всего важна глубина ямы и ее абсцисса — равновесное расстояние. Но в ряде случаев нужны и более подробные сведения о крутизне кривой слева и справа от положения равновесия. Все сведения о веществе таятся в кривой взаимодействия частиц. Зная вид этой кривой, можно рассчитать тепловые и механические свойства вещества.

Кривая энергия взаимодействия, с которой мы вас познакомили, есть зависимость энергии от расстояния. Но о каком расстоянии идет речь? Если нас интересует газообразное состояние вещества, то картина ясна. Молекулы находятся на расстояниях много больше их собственных размеров. Поэтому можно считать, что энергия зависит только от расстояния между центрами молекул. Но в жидкостях и твердых телах дело обстоит совсем не так просто. Здесь расстояние между центрами молекул примерно равно размеру молекулы. В этом случае энергия взаимодействия будет зависеть от взаимной ориентации молекул. Наша кривая энергии теряет физический смысл, если под расстоянием понимать расстояние между центрами молекул.

До самого последнего времени положение дела казалось безвыходным.

Больше четверти века тому назад, рассматривая взаимное расположение молекул в кристаллах, автор обратил внимание на то, что центр каждого атома стремится расположиться между центрами атомов соседней молекулы. Оказалось также, что взаимное расположение атомов молекулы по отношению к атомам соседней молекулы не зависит от того, в какую молекулу эти атомы входят. Короче говоря, создавалось впечатление, что атомы молекулы ведут себя индивидуально, так сказать, не обращая внимания на своих соседей в своей же молекуле. Эти наблюдения позволили высказать гипотезу: энергия взаимодействия молекул равняется энергии взаимодействия всех пар атомов этих молекул. Или, как принято говорить в физике, энергия взаимодействия молекулы аддитивно складывается из энергии взаимодействия атомов, составляющих молекулу.

Проверить это предположение оказалось возможным лишь тогда, когда в обиход вошли электронно-счетные машины.

Возьмем относительно небольшую молекулу, состоящую,

1 ... 66 67 68 69 70 71 72 73 74 ... 361
Перейти на страницу:
Тут вы можете бесплатно читать книгу Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Вязовский.
Комментарии