Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы - Александр Марков
Шрифт:
Интервал:
Закладка:
Спустя недолгое время среди клеток Mycoplasma capricolum появились бактерии с признаками Mycoplasma mycoides. Обработав культуру бактерий антибиотиком, ученые уничтожили тех микробов, которые не вобрали в себя чужую ДНК, а оставшихся подвергли тщательному изучению. По всем признакам это были самые настоящие M. mycoides. Ни генов, ни белков, характерных для исходного вида Mycoplasma capricolum, у них обнаружить не удалось. Антитела, избирательно реагирующие на поверхностные белки Mycoplasma capricolum, не прикреплялись к этим микробам, в отличие от антител, распознающих поверхностные белки Mycoplasma mycoides.
Все это свидетельствует о том, что пересадка генома полностью удалась. Авторы предполагают, что бактерии «проглатывали» чужую молекулу ДНК, и в первый момент в них, вероятно, содержались оба генома вместе. Когда такая клетка делилась, одна из дочерних клеток получала геном Mycoplasma capricolum, а другая — геном Mycoplasma mycoides. Последующая обработка антибиотиком уничтожила клетки первого типа.
Дальнейшие исследования покажут, можно ли проделывать подобную манипуляцию с другими бактериями и другими геномами. Не исключено, что вобрать в себя целый чужой геном способны только микробы, не имеющие клеточной стенки, — в этом случае микоплазмы, скорее всего, и впредь останутся единственными объектами для таких экспериментов. Так или иначе, проделанная работа сильно приблизила Крейга Вентера к его заветной цели — созданию искусственного микроба. По-видимому, эта цель может быть достигнута уже через несколько лет. Кстати сказать, в США сейчас активно дискутируются этические и юридические проблемы, связанные с близящимся созданием искусственных организмов. Самые горячие споры идут по вопросу о том, можно ли будет эти организмы патентовать.
(Источник: Lartigue C. et al. Genome Transplantation in Bacteria: Changing One Species to Another // Science. 2007. V. 317. P. 632–638.)
—————
У многоклеточных горизонтальный обмен генами между неродственными организмами играет гораздо меньшую роль. Вместо него развились более совершенные механизмы перемешивания и перекомбинирования наследственной информации, связанные с половым размножением. По сути дела это тот же самый горизонтальный обмен, но только замкнутый в пределах вида (разные особи смешивают свои гены в потомстве, но с представителями других видов обмен генами резко ограничен). К тому же половые железы у животных действительно ограждены от влияний внешней среды особым «вейсмановским» барьером, через который могут проникать только очень немногие вещества, в основном небольшие молекулы.
Тем не менее многоклеточные животные и растения время от времени заимствуют гены у микроорганизмов, например, у паразитических или симбиотических бактерий. Поскольку эти бактерии, в свою очередь, могут заимствовать гены у своих хозяев, а также переходить от одного хозяина к другому, они могут служить посредниками при переносе генетического материала между разными видами хозяев. По-видимому, это происходит чрезвычайно редко. Надежные экспериментальные подтверждения переноса генов от бактерий к многоклеточным были получены только недавно, и их пока очень мало. Но нужно иметь в виду, что редкость события вовсе не обязательно означает, что его роль в эволюции мала и незначительна. Ведь ключевые эволюционные преобразования сами по себе являются весьма редкими событиями — это, что называется, «штучный товар». Роль горизонтального переноса генов в эволюции многоклеточных еще предстоит оценить, и некоторые косвенные данные свидетельствуют о том, что она может быть весьма велика.
Рассмотрим один из случаев переноса генов бактерий в геном многоклеточного животного, обнаруженный в 2007 году. В данном случае «донором» генетического материала была паразитическая бактерия вольбахия, а «реципиентом» — мушка дрозофила. Этот случай интересен тем, что в геном насекомого встроились не отдельные гены, а целый бактериальный геном.
—————
Вольбахия — паразитическая бактерия, обитающая в клетках многих наземных и пресноводных членистоногих и круглых червей — филярий. Вольбахию называют микробом-манипулятором, поскольку она научилась при помощи специальных регуляторных белков управлять размножением и развитием своим хозяев. Например, она умеет превращать самцов в самок, избирательно убивать зародышей мужского пола, повышать плодовитость зараженных самок и даже делать бесплодными самок, которые ею не заражены. О том, как ей это удается, можно прочесть в популярных статьях: А. В. Марков. Антимужской микроб. http://elementy.ru/lib/164668, А. В. Марков, И. А. Захаров-Гезехус. Бактерия вольбахия — повелитель мух. http://evolbiol.ru/wolbachia.htm. Вольбахия «впрыскивает» регуляторные белки в цитоплазму хозяина при помощи модифицированного конъюгационного аппарата, то есть поступает примерно так же, как ее дальняя родственница агробактерия — природный генный инженер, о котором мы говорили в заключительной части главы «Управляемые мутации». Вольбахия паразитирует в клетках беспозвоночных уже более 100 миллионов лет, да и ее предки — альфапротеобактерии из группы риккетсиевых — тоже были внутриклеточными паразитами. За это время вольбахия и ее хозяева успели приспособиться друг к другу. В ряде случаев вольбахия даже повышает жизнеспособность своих хозяев, то есть выступает в роли полезного симбионта. При таком долгом и тесном сожительстве было бы даже странно, если бы какие-то фрагменты генома вольбахии время от времени не попадали в ядра клеток хозяина и не включались в хозяйский геном. Однако доказать это удалось лишь в 2007 году.
Яйцо осы Trichogramma kaykai с множеством бактерий Wolbachia (черные точки). Вольбахии концентрируются в удлиненном кончике яйца, из которого впоследствии разовьются органы размножения осы. Бактерии попадут в репродуктивные органы, затем — в яйцеклетки, обеспечив себе гарантированный переход в следующее поколение насекомых-хозяев.
—————
Довольно часто в ходе выполнения проектов по прочтению геномов высших организмов (особенно насекомых) исследователи натыкались на фрагменты бактериальных последовательностей ДНК, но это обычно интерпретировалось как результат загрязнения: предполагали, что при выделении ДНК из клеток исследуемого организма в пробы попало небольшое количество бактериальной ДНК. И соответствующие участки ДНК просто не учитывались при «сборке» генома из прочтенных фрагментов.
В середине 2007 года группа американских ученых предприняла широкомасштабный анализ таких «загрязнений» с целью найти реальные случаи переноса генов вольбахии в геномы животных-хозяев[93]. Ученые выделяли ДНК из разных видов насекомых и круглых червей — филярий, а также анализировали накопленные в Генбанке (http://www.ncbi.nlm.nih.gov/Genbank/) данные по нуклеотидным последовательностям различных беспозвоночных. Надо сказать, что многие прочтенные «вчерне» геномы до сих пор не подвергались процедуре окончательной сборки. Они хранятся в компьютерных базах в виде набора разрозненных, частично перекрывающихся обрывков разной длины. Если перенос генов от внутриклеточных бактерий к хозяевам действительно имеет место, среди этих обрывков могут обнаружиться такие куски ДНК, которые содержат одновременно и эукариотические, и бактериальные участки. Именно такие обрывки и интересовали исследователей.
В результате для четырех видов насекомых и четырех видов филярий удалось получить бесспорные доказательства внедрения генов вольбахии в геном хозяина; еще у трех видов это можно предполагать с большой долей вероятности.
Наибольшее внимание авторы уделили тропической плодовой мушке Drosophila ananassae, потому что в геноме некоторых представителей этого вида обнаружились полные или почти полные копии генома вольбахии. Получается, что в ядрах клеток этих мушек содержится полная генетическая информация сразу о двух разных организмах!
Для проверки этого результата ученые провели целый ряд специальных тестов. Мушек вылечили от вольбахии антибиотиком и убедились, что лечение привело к полному исчезновению внутриклеточных паразитов. Из вылеченных мух снова выделили ДНК. Оказалось, что полный набор генов вольбахии по-прежнему присутствует в пробах.
Затем проверили наследуемость этих генов по мужской линии. Дело в том, что вольбахия, как и другие цитоплазматические бактерии (вспомним митохондрии!), передается потомству только по материнской линии, вместе с цитоплазмой яйцеклетки. В сперматозоиды вольбахия не проникает — они для этого слишком малы. Поэтому потомство зараженной самки всегда оказывается зараженным, потомство здоровой — здоровым, а от отца это не зависит. Однако если геном вольбахии действительно встроился в геном хозяина, то он должен передаваться по отцовской линии точно так же, как и по материнской, — вместе с ядерными хромосомами.