Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » История » История естествознания в эпоху эллинизма и Римской империи - Иван Рожанский

История естествознания в эпоху эллинизма и Римской империи - Иван Рожанский

Читать онлайн История естествознания в эпоху эллинизма и Римской империи - Иван Рожанский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 68 69 70 71 72 73 74 75 76 ... 114
Перейти на страницу:

Аристотель был первым греческим мыслителем, обратившим внимание на обыденные и, по видимости, не представляющие интереса объекты. Вспомним его знаменитое место из трактата «О частях животных», где он призывает не пренебрегать изучением незначительных и даже неприятных для чувств животных[284]. В четвертой книге «Метеорологики» он дает объяснение с позиций своей качественной физики широкому спектру фактов, взятых из повседневного человеческого опыта и относящихся, согласно нашей номенклатуре, к области физико-химических процессов. В этом плане «Механические проблемы» соответствовали принципиальной установке Аристотеля — изучать причины любых, как природных, так и противоприродных, явлений. Правда, целый ряд деталей (на некоторое из них было указано в ходе предшествующего изложения) заставляют нас думать, что автором «Механических проблем» был все же не сам Стагирит, а кто-то из более молодых представителей его школы. Но независимо от вопроса об их авторстве «Механические проблемы» открыли для науки новую область — область механических явлений. Теперь можно было ожидать, что в дальнейшем появится ученый, который подвергнет эти явления строгому анализу, учитывающему достижения точных наук того времени. И такой ученый не замедлил появиться — им оказался великий механик древности Архимед[285].

Архимед

Архимед занимает уникальное положение в античной науке. Это положение определяется как характерными чертами его личности, так и направлением его научной деятельности, но прежде всего тем, что из всех античных мыслителей он по складу своего мышления, по своим интересам и устремлениям ближе всего подошел к типу ученого нового времени. Архимед объединил в своем лице, с одной стороны, гениального математика, наметившего принципиально новые пути развития этой науки, с другой же — замечательного инженера, превосходившего в отношении технического мастерства всех своих предшественников и современников. Самым существенным в этом объединении было то, что его теоретические занятия и его инженерная деятельность отнюдь не представляли собой две раздельные, непересекающиеся сферы интересов; напротив, его научные работы в значительной степени стимулировались технической практикой того времени; с другой стороны, его механические конструкции (по крайней мере в некоторой своей части) были подчинены задачам решения или иллюстрации занимавших его теоретических проблем. Что касается единства теории и практики, то в этом отношении Архимед имел, пожалуй, всего лишь одного предшественника — Фалеса Милетского, но то, что у Фалеса находилось еще в самом зачаточном состоянии, приобрело у Архимеда черты зрелого и полнокровного расцвета. При всем том Архимед не мог выйти за рамки античного образа мира, и, несмотря на всю его широту, ему была присуща известная ограниченность, коренившаяся в мироощущении того времени. В чем она состояла, покажет дальнейшее изложение.

Архимед, сын астронома Фидия, родился в Сиракузах в 287 г. до н. э. Указанная выше особенность его научного дарования проявилась, по-видимому, достаточно рано: получив блестящую по тому времени математическую подготовку, он в то же время с самого начала испытывал живой интерес к различного рода техническим проблемам. Уже в своих первых научных работах он подходит к решению этих проблем с позиций точной (математической) науки.

Не все удавалось ему сразу. В «Механике» Герона, дошедшей до нас на арабском языке, имеется пространная выписка из сочинения Архимеда, озаглавленного «Книга опор» и бывшего, по-видимому, его первой научной работой[286]. В этом сочинении Архимед решает задачу о распределении давления балки, лежащей на нескольких опорах. Вес многоопорной балки для каждого пролета он считает распределенным поровну между ограничивающими этот пролет опорами. Так, например, в случае трех опор, подпирающих балку АС в точках А, В и С, Архимед принимает, что на опору А давит вес, равный половине веса АВ, на опору С давит вес, равный половине веса ВС, а на среднюю опору давит половина веса АВ плюс половина веса ВС. Таким образом, получается, что на среднюю опору, где бы она ни находилась, давит половина общего веса балки. Вывод совершенно неправильный.

Эта и другие ошибки Архимеда в этом сочинении (если, конечно, предположить, что эти ошибки принадлежали самому Архимеду, а не пересказывавшему ого текст Герону) объяснялись, очевидно, тем, что в то время он еще не уяснил понятия центра тяжести и не понимал, что вес тела можно считать сосредоточенным в одной точке. С другой стороны, практическая проверка выводов Архимеда представляла для древних значительные трудности.

Рассмотрение многоопорной балки приводит Архимеда к случаю стержня, опирающегося на одну точку, т. е: к рычагу. Мы знаем, что в том или ином виде рычаг был древнейшим средством, служившим для поднятия и передвижения тяжестей. Люди пользовались рычагом с незапамятных времен, но пользовались им чисто эмпирически, не задавая вопроса, в чем же заключена причина эффективности этого несложного орудия. Выше мы видели, что попытка теоретического осмысления действия рычага содержалась в псевдоаристотелевских «Механических проблемах». Но это была именно попытка, еще далекая от подлинно научной теории. Такая теория была впервые создана Архимедом.

К сожалению, до нас не дошла работа Архимеда, в которой он впервые изложил теорию рычага. Возможно, что именно этой работой было называемое Паппом сочинение «О рычагах» (Περί ζυγών)[287]. Возможно также, что ему предшествовало другое сочинение — «О центрах тяжести» (Κεντροβάρικα), о котором упоминает Симпликий в своих комментариях к аристотелевскому трактату «О небе»[288]. Не исключено также, что оба этих заглавия относятся к одному и тому же сочинению. Так или иначе, созданию теории рычага у Архимеда предшествовало уяснение понятия центра тяжести. Этого понятия не знали ученые предшествовавшей эпохи; мы не находим его ни у Аристотеля, ни в «Механических проблемах». Правда, в «Механике» Герона имеется следующая загадочная фраза: «Стоик Посидоний дал центру тяжести, или момента, физическое объяснение, сказавши, что центр тяжести, или момента, есть такая точка, что если за последнюю подвесить данный груз, то он будет в ней разделен на две равные части. Поэтому Архимед и его последователи в механике более подробно рассмотрели это положение и установили разницу между точкой подвеса и центром тяжести»[289].

Эта фраза дала повод некоторым ученым (в Англии — Т. Л. Хиту, у нас — С. Я. Лурье) утверждать, что в своем первоначальном виде понятие центра тяжести было сформулировано неким стоиком начала III в. до н. э. Посидонием, которого, однако, не следует путать со знаменитым Посидонием Родосским, жившим в I в. до н. э. Однако о таком стоике мы больше ниоткуда ничего не знаем. Единственным стоиком начала III в. до п. э., имя которого нам известно, был основатель стоической школы Зенон из Китиона. Гораздо разумнее будет предположить, что в тексте Герона мы имеем дело с обычной для авторов поздней античности путаницей в порядке изложения, из-за которой создается впечатление, что Посидоний жил раньше Архимеда.

Точное определение центра тяжести приводится Паппом. Можно не сомневаться, что это определение принадлежит самому Архимеду (хотя Папп этого прямо и не указывает).

«Центром тяжести некоторого тела является некоторая расположенная внутри него точка, обладающая тем свойством, что если за нее мысленно подвесить тяжелое тело, то оно остается в покое и сохраняет первоначальное положение»[290].

Имея это определение, Архимед мог сформулировать понятие момента силы, установить условия равновесия рычага и на этой основе дать теорию рычажных весов. Каким образом это было у него первоначально сделано и пользовался ли он при этом аксиоматическим методом, применявшимся им в позднейших его работах, мы не знаем. Наиболее ранняя из целиком дошедших до нас работ Архимеда — «О квадратуре параболы» — предполагает теорию рычага уже известной.

Важное значение для Архимеда имела поездка в Александрию, оказавшая, вне всякого сомнения, стимулирующее влияние на его дальнейшее творчество. Мы считаем совершенно неубедительным предположение И. Н. Веселовского, что эта поездка была совершена, когда Архимеду было уже под пятьдесят лет, и что лишь после этого он занялся проблемами чистой математики[291]. Ничто не мешает нам допустить, что пребывание Архимеда в Александрии совпало со временем первой Пунической войны (264–241 гг. до н. э.), в которой Сиракузы не участвовали, занимая выгодную нейтральную позицию. В столице Египта Архимед познакомился с выдающимся ученым александрийской школы Кононом, занимавшим положение придворного астронома при царе Птолемее III Эвергете. Конон был лет на двадцать старше Архимеда; будучи прекрасным геометром, он ввел молодого сиракузца в круг проблем, находившихся в центре внимания александрийских математиков. По возвращении в Сиракузы Архимед продолжал поддерживать связь с Кононом, сообщая ему в письмах о результатах своих научных исследований. К сожалению, ни работы Архимеда александрийского периода, ни его письма к Конону до нас не дошли. Когда Конон умер (около 240 г. до н. э.), Архимед стал переписываться с учеником Конона Досифеем. Сохранились четыре письма Архимеда к Досифею («Квадратура параболы», «О шаре и цилиндре», «О коноидах и сфероидах» и «О спиралях»), которые можно причислить к числу важнейших математических работ Архимеда зрелого периода: в них величайший ученый древности предвосхищает идеи интегрального и дифференциального исчисления нового времени.

1 ... 68 69 70 71 72 73 74 75 76 ... 114
Перейти на страницу:
Тут вы можете бесплатно читать книгу История естествознания в эпоху эллинизма и Римской империи - Иван Рожанский.
Комментарии