Категории
Самые читаемые
PochitayKnigi » Компьютеры и Интернет » Программирование » Сущность технологии СОМ. Библиотека программиста - Дональд Бокс

Сущность технологии СОМ. Библиотека программиста - Дональд Бокс

Читать онлайн Сущность технологии СОМ. Библиотека программиста - Дональд Бокс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 71 72 73 74 75 76 77 78 79 ... 95
Перейти на страницу:

Одно общее соображение в пользу реализации сервера COM как сервиса NT заключается в том, что только сервисы NT способны выполняться со встроенной учетной записью SYSTEM. Эта учетная запись обыкновенно имеет больший доступ к таким локальным ресурсам, как файлы и ключи реестра. Кроме того, эта учетная запись часто является единственной, которая может выступать как часть доверительной компьютерной базы (trusted computing base) и использовать низкоуровневые службы защиты, доступ к которым был бы опасен из обычных пользовательских учетных записей. К сожалению, хотя учетная запись SYSTEM воистину всемогуща в локальной системе, она полностью бессильна для доступа к защищенным удаленным ресурсам, в том числе к удаленным файловым системам и к удаленным объектам COM. Это обстоятельство делает учетную запись SYSTEM отчасти менее полезной для построения распределенных систем, чем можно было бы ожидать. Вне зависимости от того, используется ли сервер как сервис NT или в качестве традиционного процесса Win32, принято создавать отдельную учетную запись пользователя для каждого приложения COM, которое имеет полные полномочия для доступа в сеть.

Где мы находимся?

В данной главе рассматривались вопросы, относящиеся к выделению классов в отдельные серверные процессы. COM поддерживает запуск серверных процессов на основе запросов на активацию. Эти серверные процессы должны саморегистрироваться с помощью библиотеки COM, используя CoRegisterClassObject для того, чтобы обеспечить доступ к объектам своего класса со стороны внешних клиентов. Архитектура системы безопасности COM тесно связана с собственной моделью безопасности операционной системы и основывается на трех различных понятиях. Целостность и аутентичность сообщений ORPC, которыми обмениваются клиент и объект, обеспечивается аутентификацией. Контроль доступа выявляет, какие принципалы защиты могут иметь доступ к объектам, экспортированным из данного процесса. Управление маркерами отслеживает, какие полномочия используются для запуска серверных процессов и выполнения методов объекта.

Разное

IChapter *pc = 0;

HRESULT hr = CoGetObject(OLESTR(«Chapter:7»), О,

IID_IChapter, (void**)&pc);

if (SUCCEEDED(hr)) {

hr = pc->IncludeAllTopicsNotCoveredYet();

pc->Release(); }

Автор, 1997

В предыдущей главе были представлены основы модели программирования СОМ и архитектуры удаленного доступа. Различные интерфейсы и методики СОМ рассматриваются на протяжении всей книги. Однако осталось несколько вопросов, не связанных ни с какой определенной главой, о которых следует рассказать подробно. Вместо того чтобы просто втиснуть эти вопросы в другие главы, которые были скомпонованы рационально или даже превышали разумные размеры, я отвел данную главу под хранилище для «маленьких» тем, которые не всегда подходят к другим частям книги. За исключением вводных разделов об указателях, управлении памятью и массивах, ни одна из этих тем не является жизненно необходимой для создания эффективных распределенных систем с СОМ. Помните об этом и расслабьтесь, в то время как ваши глаза будут скользить вдоль строк этой главы.

Основы указателей

СОМ, подобно DCE (Distributed Computing Environment – среда распределенных вычислений), ведет свое начало от языка программирования С. Хотя лишь немногие разработчики используют С для создания или использования компонентов СОМ, именно от С СОМ унаследовала синтаксис для своего языка определений интерфейсов (Interface Definition Language – IDL). Одной из наиболее сложных проблем при разработке и использовании интерфейсов является управление указателями. Рассмотрим такое простое определение метода IDL:

HRESULT f([in] const short *ps);

Если бы вызывающая программа должна была запустить этот метод так:

short s = 10;

HRESULT hr = p->f(&s);

то величину 10 следовало бы послать объекту. Если бы этому методу нужно было выйти за границы апартамента, то интерфейсный заместитель был бы обязан разыменовать указатель и передать величину 10 в сообщение ORPC-запроса.

Следующий клиентский код, хотя и написан целиком в традициях С, представляет собой более интересный случай:

HRESULT hr = p->f(0);

// pass a null pointer

// передаем нулевой указатель

Если вызывающий поток выполняется в апартаменте объекта, то заместителя нет и нулевой указатель будет передан прямо объекту. Но что если объект расположен в другом апартаменте и заместитель используется? Что в точности должен передать интерфейсный заместитель, чтобы показать, что был послан нулевой указатель? Кроме того, означает ли это, что интерфейсные заместители и заглушки должны проверять каждый указатель, не является ли он нулевым? Оказывается, бывают ситуации, в которых указатель никогда не должен быть нулевым, и другие ситуации, когда нулевые указатели, наоборот, чрезвычайно полезны как начальные значения. В последнем случае факт передачи нулевого указателя интерфейсному заместителю должен быть продублирован интерфейсной заглушкой в апартаменте объекта.

Для того чтобы удовлетворить этим столь различным требованиям, СОМ позволяет разработчикам интерфейсов указывать точную семантику каждого параметра указателя. Чтобы показать, что указатель никогда не должен принимать нулевого значения, разработчик интерфейса может применить атрибут [ref]:

HRESULT g([in, ref] short *ps);

// ps cannot be a null ptr.

// ps не может быть нулевым указателем

Указатели, использующие атрибут [ref], называются ссылочными указателями (reference pointers). При IDL-определении, приведенном выше, следующий код со стороны клиента:

HRESULT hr = p->g(0);

// danger: passing null [ref] ptr.

// опасность: передается нулевой указатель с атрибутом [ref]

является ошибочным. И если p указывает на интерфейсный заместитель, то данный интерфейсный заместитель обнаружит нулевой указатель и возвратит вызывающей программе ошибку маршалинга, даже не передав метод текущему объекту. А чтобы сделать нулевой указатель допустимым значением параметра, в IDL-определении следует использовать атрибут [unique]:

HRESULT h([in, unique] short *ps);

// ps can be a null ptr.

// ps может быть нулевым указателем

Указатели, использующие атрибут [unique], называются уникальными указателями (unique pointers). При IDL-определении, приведенном выше, следующий код со стороны клиента:

HRESULT hr = p->h(0);

// relax: passing null [unique] ptr.

// расслабьтесь: передается нулевой указатель с атрибутом [unique]

является допустимым. Это означает, что интерфейсный заместитель должен подробно исследовать указатель перед тем, как разыменовать его. И что более важно: это означает, что интерфейсному заместителю необходимо записывать в ответ на ORPC-запрос не только разыменованную величину. Кроме нее, он должен записать тег, указывающий, был или не был передан нулевой указатель. Это добавляет к размеру ORPC-сообщения четыре байта на каждый указатель. Для большинства приложений эти добавочные четыре байта и то процессорное время, которое необходимо для выявления нулевого указателя[1], пренебрежимо малы по сравнению с преимуществами использования нулевых указателей в качестве параметров.

Вообще говоря, схемы [ref] и [unique] мало отличаются по эффективности. Однако до сих пор не обсуждалась еще одна проблема, связанная с указателями. Рассмотрим следующий фрагмент на IDL:

HRESULT j([in] short *ps1, [in] short *ps2);

Имея такое IDL-определение, рассмотрим теперь следующий фрагмент кода со стороны клиента:

short x = 100;

HRESULT hr = p->j(&x, &х);

// note: same ptr. passed twice

// заметим: тот же самый указатель передан дважды

Естественный вопрос: что должен делать интерфейсный заместитель при наличии одинаковых указателей? Если интерфейсный заместитель не делает ничего, тогда значение 100 будет передано в ORPC-запросе дважды: один раз для *ps1 и один раз для *ps2. Это означает, что заместитель посылает одну и ту же информацию дважды, впустую занимая сеть и тем самым уменьшая ее пропускную способность. Конечно, число байтов, занятых величиной 100, невелико, но если бы ps1 и ps2 указывали на очень большие структуры данных, то повторная передача существенно повлияла бы на производительность. Другой побочный эффект от невыявления дублирующего указателя состоит в том, что интерфейсная заглушка будет демаршалировать эти значения в два различных места памяти. Если бы семантика метода изменилась из-за тождественности двух таких указателей:

STDMETHODIMP MyClass::j(short *ps1, short *ps2)

{

if (ps1 == ps2)

return this->OneKindOfBehavior(ps1);

else

return this->AnotherKindOfBehavior(ps1, ps2);

}

то интерфейсный маршалер нарушил бы семантический контракт (semantic contract) интерфейса, что нарушило бы прозрачность экспорта в СОМ.

Наличие атрибутов указателя [ref] и [unique] означает, что память, на которую ссылается указатель, не является ссылкой для какого-либо другого указателя в вызове метода и что интерфейсный маршалер не должен осуществлять проверку на дублирование указателей. Для того чтобы показать, что указатель может ссылаться на память, на которую ссылается другой указатель, разработчику IDL следует использовать атрибут [ptr]:

1 ... 71 72 73 74 75 76 77 78 79 ... 95
Перейти на страницу:
Тут вы можете бесплатно читать книгу Сущность технологии СОМ. Библиотека программиста - Дональд Бокс.
Комментарии