Эмбрионы, гены и эволюция - Рудольф Рэфф
Шрифт:
Интервал:
Закладка:
На этой стадии развития мышиного зародыша, достигаемой через 6,5-7 сут после оплодотворения, начинается дифференцировка собственно зародыша. Это проявляется в формировании на яйцевом цилиндре первичной полоски и образовании между уже имеющимися зародышевыми эктодермой и энтодермой слоя мезодермальных клеток. У зародышей, гомозиготных по аллелю t9, нормальная мезодерма не образуется и соответственно не образуется ни одно из ее производных. Поскольку мезодермальные клетки образуются из зародышевой эктодермы в области первичной полоски, можно предположить, что мутантные эктодермальные клетки неспособны к такому превращению. Мутантные t9-зародыши, пересаженные в брюшную полость нормальных взрослых особей, образуют злокачественные опухоли, целиком состоящие из эктодермальных тканей.
Первичная полоска - это место образования трех зародышевых листков и развития первичной оси зародыша.
По обе стороны первичной оси на большей части ее длины образуются сомиты, а медиально по отношению к парным сомитам - хордомезодерма. Последняя индуцирует лежащую над ней нейральную эктодерму к формированию нервной трубки - структуры, которая в конечном итоге становится спинным мозгом, а на переднем конце головным мозгом. Все эти события происходят и у зародышей tw1. Однако после образования нервных структур вентральная часть нервной трубки и головной мозг у них дегенерируют. Сохраняющиеся дорсальные клетки физически замещают мертвые вентральные клетки, но, по-видимому, не могут заменить их функционально, потому что у этих мутантных зародышей всегда наблюдаются разного рода дефекты и они гибнут до рождения.
Конечное летальное состояние, обусловленное локусом Т, можно видеть у особей, гомозиготных по доминантному аллелю Т. Летальная фаза у этих особей сходна с наблюдаемой у мутантов tw1, т. е. она наступает позднее, чем в случае большинства других рецессивных аллелей. У особей Т/Т первичная полоска не достигает заднего конца зародыша. Поэтому ни одна из структур, зависящих от формирования мезодермы, в этой области никогда не развивается. Кроме того, что более важно, аллантоисная ножка плаценты у них не образуется, т.е. зародыш лишается необходимых для его жизни нормальных связей с плацентой. Вдобавок не развивается ни одна из структур самого зародыша, находящихся позади почек передних конечностей. Наконец, несмотря на, казалось бы, нормальный передний конец первичной полоски и на образование сомитов и хорды, эти последние структуры не сохраняются, а исчезают. В результате строение переднего конца зародыша оказывается сильно нарушенным.
Создается впечатление, что, хотя дефекты, наблюдаемые у этой галереи уродцев, развивающихся под действием мутаций в сложном локусе Т, очень разнообразны, все они имеют одну общую особенность. Как отметил Беннетт (Bennett), все летальные Т-аллели вызывают дефекты эктодермы. Эти дефекты выражаются в нарушении способности эктодермы мутантов либо нормально дифференцироваться (t12 и t0), либо нормально функционировать (tw73 и tw1). Описанные выше дефекты схематически представлены на рис. 7-12. Как показано на схеме, можно представить себе, что различные мутации локуса Т должны делать ряд последовательных выборов из двух возможностей, определяющих дальнейшую судьбу эктодермы и всех ее производных. Первоначально морула состоит из недифференцированных клеток. Мутация t12 препятствует принятию первого решения - выбору между трофобластом и внутренней клеточной массой. Затем мутация tw73 нарушает надлежащее функционирование трофобласта. Мутация t0 препятствует образованию внезародышевой эктодермы; ее эффект, возможно, аналогичен эффекту мутации t12. На параллельном этапе мутация tw5 убивает эктодерму собственно зародыша. Наконец, мутации t9, tw1 и Т нарушают различным образом либо способность зародышевой эктодермы дифференцироваться в мезодерму, либо способность мезодермы, если она уже образовалась, индуцировать или поддерживать нервную ткань.
Рис. 7-12. Предполагаемая цепь последовательных решений, которые должны приниматься в процессе дифференцировки эктодермы и ее производных у мыши. Над стрелками указаны различные t-аллели, блокирующие соответствующие процессы.
Первичное нарушение, лежащее в основе всех этих далеко идущих эффектов всего лишь одного локуса, составляет в настоящее время предмет многочисленных споров и экспериментальных исследований. Однако, какова бы ни была непосредственная причина (или причины) этих дефектов, совершенно очевидно, что локус Т играет первостепенную роль в морфогенезе одного из трех зародышевых листков мышиного зародыша. Поэтому он, подобно локусу Notch у дрозофилы, принимает важное участие в развитии организма в целом.
Мутации, воздействующие на развитие определенных органов
В то время как локус Т оказывает, по-видимому, самые разнообразные воздействия на все развитие эктодермы, существуют мутации, вызывающие более специфические дефекты. Примером служит мутация cardiac lethal (с) у аксолотля Ambystoma mexicanum. Эта мутация была впервые обнаружена и исследована Хэмфри (Humphrey). Хэмфри установил, что мутация с наследуется как простой аутосомный рецессивный признак, так что при скрещивании двух гетерозиготных особей (с/+) 25% потомков гибнет на ранних личиночных стадиях, вскоре после вылупления. Эти мутантные особи плавают, как нормальные личинки, но они раздуты переполняющей их жидкостью, а пищеварительная система и жабры у них недоразвиты (рис. 7-13). Первичная причина этих дефектов - нарушение развития сердца и его неспособность к сокращениям. Поэтому у мутантных личинок отсутствует кровообращение, а дышат они, вероятно, путем диффузии через кожу, что дает им возможность просуществовать лишь в течение ограниченного периода времени. Как показал Хэмфри путем сращивания нормального и мутантного зародышей, это нарушение развития сердца носит автономный характер.
Эксперимент Хэмфри схематически представлен на рис. 7-14. У мутантного и нормального зародышей, взятых до закладки сердца, удаляли по кусочку ткани с боковых поверхностей тела. Затем зародышей соединяли по месту раны и давали им срастись. В тех случаях, когда такие сросшиеся особи завершали развитие, было установлено, что нормальный партнер ослаблял раздутость и другие дефекты зародыша с/с, давая ему возможность выжить. Однако сердце мутантного партнера навсегда оставалось простой трубкой, неспособной к сокращениям, и кровообращение мутанта целиком обеспечивал нормальный партнер.
Установлено, что у позвоночных многие органы, в том числе сердце, развиваются в результате определенных индукционных взаимодействий, происходящих во время развития. В частности, Джекобсон и Дункан (Jacobson, Duncan) показали, что у хвостатых амфибий развитие сердца из мезодермальных зачатков индуцируется головным участком энтодермы. Причиной того, что особям с/с не удается образовать сердце, может быть неспособность головного участка энтодермы индуцировать этот процесс или же неспособность сердечной мезодермы реагировать на индуктор. Для того чтобы выяснить, какая из этих двух причин вызывает нарушение развития,
Хэмфри пересаживал нормальную сердечную мезодерму с/с-реципиентам, а мезодерму с/с-мутантов - нормальным реципиентам. Оказалось, что мезодерма с/с способна образовать сокращающееся сердце под индукционным воздействием нормального головного участка энтодермы, тогда как мутантные зародыши не могут обеспечить развитие нормального сердца. Эти результаты можно интерпретировать как указание на отсутствие индукционной активности головного участка энтодермы у мутанта с/с. Однако возможно также, что мутантные особи активно подавляют формирование сердца. Эксперименты, проведенные Лемански (Lemanski) и его сотрудниками, делают последнее предположение менее вероятным. Эти авторы выращивали in vitro мезодермальные зачатки сердца мутантных и нормальных зародышей. В использованных ими условиях в нормальной сердечной мезодерме происходили сильные сокращения, а в мутантной их не было. Если считать, что сокращения мутантной ткани подавлялись in situ, то выращивание in vitro должно было снять это воздействие. Более того, при совместном культивировании мезодермы мутанта с/с и головного участка энтодермы нормального зародыша в мутантной ткани начинались сокращения; это показывает, что мутантная мезодерма способна нормально реагировать на соответствующее индукционное воздействие. Таким образом, ген «cardiac lethal», очевидно, обусловливает неспособность головного участка энтодермы обеспечить индукционный сигнал, запускающий дифференцировку сердца из его мезодермального зачатка.