Апология математики (сборник статей) - Владимир Андреевич Успенский
Шрифт:
Интервал:
Закладка:
Для своей системы аксиом геометрии Гильберт выбирает восемь исходных, или неопределяемых, понятий: точка, прямая, плоскость, отношение связи точки и прямой, отношение связи точки и плоскости, отношение «находиться между» (для точек), отношение конгруэнтности отрезков, отношение конгруэнтности углов. (В школьном курсе математики конгруэнтность геометрических фигур, в том числе отрезков и углов, называют обычно их равенством.) Список же своих аксиом он для удобства изложения разбивает на пять групп.
Аксиомы первой группы говорят о способах, которыми прямые и плоскости связываются, соединяются или сочетаются с точками. Поэтому их называют аксиомами связи, или аксиомами соединения, или аксиомами сочетания. Наглядно мы себе представляем, что значит, что какая-то точка лежит на какой-то прямой или на какой-то плоскости. Это соотношение между точкой А и прямой или плоскостью р словесно можно выразить по-разному: «А лежит на р», «р проходит через А», «А соединяется (сочетается) с р». Все эти взятые в кавычки обороты синонимичны, они выражают один и тот же факт. Таким образом, слова разные, а понятие одно и то же; его можно называть и 'соединяться', и 'сочетаться', и 'лежать на', и 'проходить через'.
В обычной, школьной, геометрии прямая рассматривается как множество точек. В аксиоматической геометрии прямые – это просто такие особые объекты, часть из которых связана (соединяется, сочетается и т. д.) с другими объектами, точками. Но каждой прямой отвечает множество точек, лежащих на этой прямой. Вместо того чтобы говорить длинно: «Точка А принадлежит множеству точек, лежащих на прямой р», – говорят короче: «Точка А принадлежит прямой р» (и эта фраза выражает то же, что и фраза «р проходит через А»). Аналогично фразу «Точка А принадлежит множеству точек, лежащих на плоскости π» сокращают до фразы: «Точка А принадлежит плоскости π» (и эта фраза выражает то же, что и фраза «π проходит через А»). Поэтому отношения связи называют также отношениями принадлежности, а аксиомы связи – аксиомами принадлежности.
‹…›
§ 15. Аксиомы метрики и аксиомы меры
Знаете ли вы, уважаемый читатель, что такое расстояние между двумя точками? Ну, конечно же, знаете – это знают все: надо соединить эти точки отрезком и измерить его длину. Очень хорошо. Значит, когда говорят, что от Москвы до Владивостока столько-то километров, мысленно соединяют эти города отрезком прямой… Нет, тут что-то не так, ведь вследствие шарообразности Земли этот отрезок пройдёт под землёй. А расстояния между городами всё-таки измеряются по поверхности Земли. Значит, расстояние между Москвой и Владивостоком надо мерить так: натянуть между этими двумя городами нитку по глобусу, измерить её длину и затем умножить на масштаб. На более научном языке тот же способ излагается так: находим дугу большого круга, соединяющую Москву и Владивосток, и измеряем её. (Для простоты изложения мы принимаем, что Земля – это в точности шар; именно тогда можно говорить о «больших кругах», т. е. о тех окружностях на поверхности Земли, центр которых совпадает с центром Земли.) Допустим, что мы нашли расстояние между нашими городами именно таким способом (можно даже внести поправку на отклонение формы Земли от шара). Но если мы теперь откроем железнодорожный справочник, то мы увидим совсем другое расстояние – и это понятно, поскольку там расстояние указывается в километрах железнодорожного пути. А в справочнике автомобильных дорог – ещё одно расстояние, в километрах автодорог. (Мы игнорируем как незначительное то обстоятельство, что автодорога от Москвы до Владивостока до сих пор не проложена.)
Итак, мы обнаружили четыре разных расстояния между Москвой и Владивостоком. Которое же из них истинное? А ведь есть ещё и другие способы измерения расстояния. Всем известно, что капитаны добрых старых времён измеряли путь по пучинам вод не иначе как количеством выкуренных трубок. Вот более серьёзный пример: представим себе неоднородное прозрачное вещество, внутри которого распространяется свет. Тогда расстояние между двумя точками уместно измерять временем прохождения света от одной точки до другой, и это время будет зависеть не только от геометрического расстояния между точками, но и от меняющихся на его пути оптических свойств среды.
Повторим вопрос: какой же из способов измерения расстояния приводит к истинному расстоянию? Ответ: все. Просто мы имеем дело с разными представлениями о расстоянии, или, как говорят, с разными метриками.
Вот, скажем, в случае Москвы и Владивостока мы имели четыре разные метрики: 1) евклидову метрику, когда расстояние между двумя точками пространства измеряется длиной соединяющего их отрезка, пусть даже и протыкающего насквозь нашу планету; 2) сферическую метрику, когда расстояние между двумя точками мерится по поверхности сферы; 3) железнодорожную метрику, когда расстояние между двумя точками измеряется длиною рельсового пути между ними; 4) автомобильную метрику, когда расстояние измеряется длиной автомобильного пути.
А давайте подумаем, можно ли расстояние между двумя точками туристского маршрута измерять временем перехода. Если мы так сделаем, то расстояние от точки А, лежащей под горой, до точки В, расположенной на горе, может оказаться больше, чем расстояние от В до А, что как-то нехорошо. (По той же причине нельзя мерить расстояние количеством затраченного топлива.) В наших предыдущих примерах такого неприятного эффекта не наблюдалось, и расстояние было симметричным. А вот между площадями Москвы измерять расстояние при помощи пробега автомобиля нельзя: такое расстояние оказалось бы несимметричным (ввиду наличия улиц с односторонним движением и вызванной этим необходимости объездов).
Можно попытаться выделить те свойства, которые присущи всем мыслимым способам измерения расстояния. Таких свойств оказалось три. Во-первых, расстояние от любого места до этого же самого места равно нолю, а расстояние между различными местами не может быть равно нолю. Во-вторых, расстояние от одного места до второго должно быть равно расстоянию от второго места до первого (свойство симметричности расстояния). В-третьих, мы не можем сократить расстояние от А до В, если по дороге зайдём в пункт С. Все эти свойства оформляются в виде так называемых аксиом метрики. А метрикой называется функция, ставящая в соответствие двум объектам расстояние между ними.
Итак, мы познакомились с различными способами измерения расстояния; все они подчиняются аксиоматике метрики. Но бывают и совсем другие измерения. Так, размер комнаты обычно измеряют площадью